Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptional profiling identifies Id2 function in dendritic cell development

Abstract

Dendritic cells (DCs) are potent antigen-presenting cells with a pivotal role in antigen-specific immune responses. Here, we found that the helix-loop-helix transcription factor Id2 is up-regulated during DC development in vitro and crucial for the development of distinct DC subsets in vivo. Id2−/− mice lack Langerhans cells (LCs), the cutaneous contingent of DCs, and the splenic CD8α+ DC subset is markedly reduced. Mice deficient for transforming growth factor (TGF)-β also lack LCs, and we demonstrate here that, in DCs, TGF-β induces Id2 expression. We also show that Id2 represses B cell genes in DCs. These findings reveal a TGF-β–Id2 signaling pathway in DCs and suggest a mechanism by which Id2 affects the lineage choice of B cell and DC progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differentiation of human DCs from hematopoietic progenitor cells in vitro.
Figure 2: RNA hybridization and immunoblot analysis of Id2 expression in human and mouse DCs.
Figure 3: Id2−/− mice lack CD8α+ DCs and LCs.
Figure 4: TGF-β induces Id2 transcription.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Lanzavecchia, A. & Sallusto, F. Regulation of T cell immunity by dendritic cells. Cell 106, 263–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Ardavin, C. et al. Origin and differentiation of dendritic cells. Trends Immunol. 22, 691–700 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, Y.J., Kanzler, H., Soumelis, V. & Gilliet, M. Dendritic cell lineage, plasticity and cross-regulation. Nat. Immunol. 2, 585–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Shortman, K. & Liu, Y.J. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Traver, D. et al. Development of CD8α+ dendritic cells from a common myeloid progenitor. Science 290, 2152–2154 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Manz, M.G., Traver, D., Miyamoto, T., Weissman, I.L. & Akashi, K. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97, 3333–3334 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Wu, L. et al. Development of thymic and splenic dendritic cell populations from different hemopoietic precursors. Blood 98, 3376–3382 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185, 1101–1111 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Asselin-Paturel, C. et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol. 2, 1144–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Nakano, H., Yanagita, M. & Gunn, M.D. CD11c+ B220+ Gr-1+ cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J. Exp. Med. 194, 1171–1178 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martinez del Hoyo, G et al. Characterisation of a common precursor population for dendritic cells. Nature 415, 1043–1047 (2002).

    Article  CAS  Google Scholar 

  14. Norton, J.D., Deed, R.W., Craggs, G. & Sablitzky, F. Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol. 8, 58–65 (1998).

    CAS  PubMed  Google Scholar 

  15. Massari, M.E. & Murre, C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20, 429–440 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yokota, Y. Id and development. Oncogene 20, 8290–8298 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Mori, S., Nishikawa, S.I. & Yokota, Y. Lactation defect in mice lacking the helix-loop-helix inhibitor Id2. EMBO J. 19, 5772–5781 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ikawa, T., Fujimoto, S., Kawamoto, H., Katsura, Y. & Yokota, Y. Commitment to natural killer cells requires the helix-loop-helix inhibitor Id2. Proc. Natl. Acad. Sci. USA 98, 5164–5169 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fukuyama, S. et al. Initiation of NALT organogenesis is independent of the IL-7R, LTβR, and NIK signaling pathways but requires the Id2 gene and CD3 CD4+ CD45+ cells. Immunity 17, 31–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Boehmelt, G. et al. Dendritic cell progenitor is transformed by a conditional v-Rel estrogen receptor fusion protein v-RelER. Cell 80, 341–352 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Ju, X.-J. & Zenke, M. Differentiation of human antigen presenting dendritic cells from CD34+ hematopoietic stem cells in vitro. in Methods in Molecular Medicine. Cytokines and Colony Assays (ed. Körholz, D.) 399–407 (Humana Press, Totowa, NJ, 2003).

    Google Scholar 

  23. Granucci, F. et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat. Immunol. 2, 882–888 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Soumelis, V. et al. Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673–680 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Tamayo, P. et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96, 2907–2912 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boudjelal, M. et al. Overexpression of Stra13, a novel retinoic acid-inducible gene of the basic helix-loop-helix family, inhibits mesodermal and promotes neuronal differentiation of P19 cells. Genes Dev. 11, 2052–2065 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vremec, D., Pooley, J., Hochrein, H., Wu, L. & Shortman, K. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 164, 2978–2986 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Hochrein, H. et al. Differential production of IL-12, IFN-α, and IFN-γ by mouse dendritic cell subsets. J. Immunol. 166, 5448–5455 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Borkowski, T.A., Letterio, J.J., Farr, A.G. & Udey, M.C. A role for endogenous transforming growth factor β1 in Langerhans cell biology: the skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 184, 2417–2422 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Strobl, H. & Knapp, W. TGF-β1 regulation of dendritic cells. Microbes Infect. 1, 1283–1290 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Kee, B.L., Rivera, R.R. & Murre, C. Id3 inhibits B lymphocyte progenitor growth and survival in response to TGF-β. Nat. Immunol. 2, 242–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Sugai, M. et al. Essential role of Id2 in negative regulation of IgE class switching. Nat. Immunol. 4, 25–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Wong, J. et al. Characterization of a basic helix-loop-helix protein, ABF-1: nuclear localization, transcriptional properties, and interaction with Id2. DNA Cell Biol. 20, 465–471 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Galy, A., Travis, M., Cen, D. & Chen, B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3, 459–473 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Miyamoto, T. et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev. Cell 3, 137–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Becker-Herman, S., Lantner, F. & Shachar, I. Id2 negatively regulates B cell differentiation in the spleen. J. Immunol. 168, 5507–5513 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Spits, H., Couwenberg, F., Bakker, A.Q., Weijer, K. & Uittenbogaart, C.H. Id2 and Id3 inhibit development of CD34+ stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2. J. Exp. Med. 192, 1775–1784 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoshida, H. et al. Different cytokines induce surface lymphotoxin-αβ on IL-7 receptor-α cells that differentially engender lymph nodes and Peyer's patches. Immunity 17, 823–833 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Burkly, L. et al. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373, 531–536 (1995).

    CAS  PubMed  Google Scholar 

  42. Weih, F. et al. Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-κ B/Rel family. Cell 80, 331–340 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, L. et al. RelB is essential for the development of myeloid-related CD8α dendritic cells but not of lymphoid-related CD8α+ dendritic cells. Immunity 9, 839–847 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Schiavoni, G. et al. ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8α+ dendritic cells. J. Exp. Med. 196, 1415–1425 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fischer, M. et al. I. A bioactive designer cytokine for human hematopoietic progenitor cell expansion. Nat. Biotechnol. 15, 142–145 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Diebold, S.S. et al. Efficient gene delivery into human dendritic cells by adenovirus polyethylenimine and mannose polyethylenimine transfection. Hum. Gene Ther. 10, 775–786 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Manickasingham, S. & Reis e Sousa, C. Microbial and T cell-derived stimuli regulate antigen presentation by dendritic cells in vivo. J. Immunol. 165, 5027–5034 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Madruga, J., Koritschoner, N.P., Diebold, S.S., Kurz, S.M. & Zenke, M. Polarised expression pattern of focal contact proteins in highly motile antigen presenting dendritic cells. J. Cell Sci. 112, 1685–1696 (1999).

    CAS  PubMed  Google Scholar 

  50. Kurz, S.M. et al. The impact of c-met/scatter factor receptor on dendritic cell migration. Eur. J. Immunol. 32, 1832–1838 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Valladeau, J. et al. Identification of mouse langerin/CD207 in Langerhans cells and some dendritic cells of lymphoid tissues. J. Immunol. 168, 782–792 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Hinz, M. et al. Nuclear factor κB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J. Exp. Med. 196, 605–617 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Sablitzky for Id1 and Id2 cDNA; S. Saeland for the langerin antibody; D. Kobelt and A. Steinkasserer for HSV; H.D. Klenk for influenza virus; A. Mansouri and P. Gruss for sharing the Id2−/− mice; P. Grasshoff, T. Kaiser and K. Raba for cell sorting; S.S. Diebold and T. Blankenstein for discussions and support; S. Knespel and G. Blendinger for technical assistance; and P. Haink and P. Podlatis for secretarial assistance. This work was funded by grants of the Fonds der Chemischen Industrie, German Research Foundation (Ze 432/1 and Ze432/2) to M.Z. and a grant of the Edward Jenner Institute for Vaccine Research to M.Z. and T.C.G. X.-S.J. received a postdoctoral fellowship from the German Academic Exchange Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zenke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hacker, C., Kirsch, R., Ju, XS. et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 4, 380–386 (2003). https://doi.org/10.1038/ni903

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni903

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing