Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subversion of the innate immune system by a retrovirus

Abstract

Retroviruses evolve rapidly to avoid the immune response of the infected host. We show here that the wild-type mouse mammary tumor virus MMTV(C3H) persisted indefinitely in C3H/HeN mice. However, it was rapidly lost in mice of the closely related C3H/HeJ strain and was replaced by a virus recombinant with an endogenous Mtv provirus. Maintenance of the wild-type virus was dependent on Toll-like receptor-4 (TLR4) signaling, which triggered production of the immunosuppressive cytokine interleukin-10. In the presence of mutant TLR4 in C3H/HeJ mice, wild-type virus was eliminated by the cytotoxic immune response, promoting selection of the immune escape recombinant MMTV variants. Thus, subversion of the innate immune system is yet another survival strategy used by retroviruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wild-type MMTV(C3H) is under selective pressure in C3H/HeJ mice and is gradually replaced with recombinant MMTV(HeJ)-like virus.
Figure 2: Newly selected MMTV is a recombinant between wild-type MMTV(C3H) and endogenous Mtv1.
Figure 3: Loss of TLR4 function results in selection of the recombinant virus.
Figure 4: TLR4 is involved in MMTV-induced immunomodulation.
Figure 5: MMTV stimulates TLR4-dependent IL-10 production.

Similar content being viewed by others

References

  1. Tortorella, D., Gewurz, B.E., Furman, M.H., Schust, D.J. & Ploegh, H.L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000).

    Article  CAS  Google Scholar 

  2. Bowie, A. et al. A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc. Natl. Acad. Sci. USA 97, 10162–10167 (2000).

    Article  CAS  Google Scholar 

  3. Preston, B.D. & Dougherty, J.P. Mechanisms of retroviral mutation. Trends Microbiol. 4, 16–21 (1996).

    Article  CAS  Google Scholar 

  4. Hu, W.S. & Temin, H.M. Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc. Natl. Acad. Sci. USA 87, 1556–1560 (1990).

    Article  CAS  Google Scholar 

  5. Domingo, E. & Holland, J.J. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51, 151–178 (1997).

    Article  CAS  Google Scholar 

  6. Outzen, H.C., Corrow, D. & Shultz, L.D. Attenuation of exogenous murine mammary tumor virus virulence in the C3H/HeJ mouse substrain bearing the Lps mutation. J. Natl. Cancer Inst. 75, 917–923 (1985).

    Article  CAS  Google Scholar 

  7. Hook, L.M., Agafonova, Y., Ross, S.R., Turner, S.J. & Golovkina, T.V. Genetics of mouse mammary tumor virus-induced mammary tumors: linkage of tumor induction to the gag gene. J. Virol. 74, 8876–8883 (2000).

    Article  CAS  Google Scholar 

  8. Coffin, J.M. Retroviridae: the viruses and their replication. Fundamental Virology (eds. Fields, B.N., Howley, P.M. & Knipe, D.M.) 763–844 (Raven Press, New York, NY, 1996).

    Google Scholar 

  9. MacDonald, H.R. et al. T-cell reactivity and tolerance to Mlsa-encoded antigens. Immunol. Rev. 107, 89–108 (1989).

    Article  CAS  Google Scholar 

  10. Held, H. et al. Superantigen-reactive CD4+ T cells are required to stimulate B cells after infection with mouse mammary tumor virus. J. Exp. Med. 177, 359–366 (1993).

    Article  CAS  Google Scholar 

  11. Acha-Orbea, H. & MacDonald, H.R. Superantigens of mouse mammary tumor virus. Annu. Rev. Immunol. 13, 459–486 (1995).

    Article  CAS  Google Scholar 

  12. Golovkina, T.V., Dudley, J.P. & Ross, S.R. B and T cells are required for mouse mammary tumor virus spread within the mammary gland. J. Immunol. 161, 2375–2382 (1998).

    CAS  PubMed  Google Scholar 

  13. Golovkina, T.V., Jaffe, A. & Ross, S.R. Coexpression of exogenous and endogenous mouse mammary tumor virus RNA in vivo results in viral recombination and broadens the virus host range. J. Virol. 68, 5019–5026 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Golovkina, T.V., Dudley, J.P., Jaffe, A.B. & Ross, S.R. Mouse mammary tumor viruses with functional superantigen genes are selected during in vivo infection. Proc. Natl. Acad. Sci. USA 92, 4828–4832 (1995).

    Article  CAS  Google Scholar 

  15. Marrack, P., Kushnir, E. & Kappler, J. A maternally inherited superantigen encoded by mammary tumor virus. Nature 349, 524–526 (1991).

    Article  CAS  Google Scholar 

  16. Golovkina, T.V., Chervonsky, A.V., Dudley, J.P. & Ross, S.R. Transgenic mouse mammary tumor virus superantigen expression prevents viral infection. Cell 69, 637–645 (1992).

    Article  CAS  Google Scholar 

  17. Held, W. et al. Superantigen-induced immune stimulation amplifies mouse mammary tumor virus infection and allows virus transmission. Cell 74, 529–540 (1993).

    Article  CAS  Google Scholar 

  18. Glode, L.M. & Rosenstreich, D.L. Genetic control of B cell activation by bacterial lipopolysaccharide is mediated by multiple distinct genes or alleles. J. Immunol. 117, 2061–2066 (1976).

    CAS  PubMed  Google Scholar 

  19. Vogel, S.N. et al. Cutting edge: functional characterization of the effect of the C3H/HeJ defect in mice that lack an Lpsn gene: in vivo evidence for a dominant negative mutation. J. Immunol. 162, 5666–5670 (1999).

    CAS  PubMed  Google Scholar 

  20. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  Google Scholar 

  21. Hoshino, K. et al. Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  PubMed  Google Scholar 

  22. Qureshi, S.T. et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189, 615–625 (1999).

    Article  CAS  Google Scholar 

  23. Pucillo, C., Cepeda, R. & Hodes, R.J. Expression of a MHC class II transgene determines both superantigenicity and susceptibility to mammary tumor virus infection. J. Exp. Med. 178, 1441–1445 (1993).

    Article  CAS  Google Scholar 

  24. Koller, B.H., Marrack, P., Kappler, J.W. & Smithies, O. Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells. Science 248, 1227–1230 (1990).

    Article  CAS  Google Scholar 

  25. Rassa, J.C., Meyers, J.L., Zhang, Y., Kudaravalli, R. & Ross, S.R. Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proc. Natl. Acad. Sci. USA 99, 2281–2286 (2002).

    Article  CAS  Google Scholar 

  26. Moore, K.W., de Waal Malefyt, R., Coffman, R.L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    Article  CAS  Google Scholar 

  27. Sing, A., Roggenkamp, A., Geiger, A.M. & Heesemann, J. Yersinia enterocolitica evasion of the host innate immune response by V antigen-induced IL-10 production of macrophages is abrogated in IL-10-deficient mice. J. Immunol. 168, 1315–1321 (2002).

    Article  CAS  Google Scholar 

  28. Eaton, K.A., Mefford, M. & Thevenot, T. The role of T cell subsets and cytokines in the pathogenesis of Helicobacter pylori gastritis in mice. J. Immunol. 166, 7456–7461 (2001).

    Article  CAS  Google Scholar 

  29. Akridge, R.E., Oyafuso, L.K. & Reed, S.G. IL-10 is induced during HIV-1 infection and is capable of decreasing viral replication in human macrophages. J. Immunol. 153, 5782–5789 (1994).

    CAS  PubMed  Google Scholar 

  30. Fleming, S.B., McCaughan, C.A., Andrews, A.E., Nash, A.D. & Mercer, A.A. A homolog of interleukin-10 is encoded by the poxvirus orf virus. J. Virol. 71, 4857–4861 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Spencer, J.V. et al. Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J. Virol. 76, 1285–1292 (2002).

    Article  CAS  Google Scholar 

  32. Sing, A. et al. Yersinia V-antigen exploits toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J. Exp. Med. 196, 1017–1024 (2002).

    Article  CAS  Google Scholar 

  33. Beutner, U., Kraus, E., Kitamura, D., Rajewsky, K. & Huber, B.T. B cells are essential for murine mammary tumor virus transmission, but not for presentation of endogenous superantigens. J. Exp. Med. 179, 1457–1466 (1994).

    Article  CAS  Google Scholar 

  34. Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature 360, 225–231 (1992).

    Article  CAS  Google Scholar 

  35. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B-cell deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature 350, 423 (1991).

    Article  CAS  Google Scholar 

  36. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  Google Scholar 

  37. Koller, B.H., Marrack, P., Kappler, J.W. & Smithies, O. Normal development of mice deficient in β2M, MHC class I proteins, and CD8+ T cells. Science 248, 1227–1230 (1990).

    Article  CAS  Google Scholar 

  38. Mach, N. et al. Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res. 60, 3239–3246 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by US National Institutes of Health grants (to T.V.G. and The Jackson Laboratory), an award from the Hillsdale Foundation (to T.V.G.) and a grant from The Jackson Laboratory (to T.V.G.). We thank D. Roopenian and S. Ross for helpful discussions and S. Williamson for the artwork. This article is dedicated to the memory of Charles Janeway, Jr.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana V Golovkina.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jude, B., Pobezinskaya, Y., Bishop, J. et al. Subversion of the innate immune system by a retrovirus. Nat Immunol 4, 573–578 (2003). https://doi.org/10.1038/ni926

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni926

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing