Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human uracil–DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination

Abstract

Activation-induced cytidine deaminase (AID) is a 'master molecule' in immunoglobulin (Ig) class-switch recombination (CSR) and somatic hypermutation (SHM) generation, AID deficiencies are associated with hyper-IgM phenotypes in humans and mice. We show here that recessive mutations of the gene encoding uracil–DNA glycosylase (UNG) are associated with profound impairment in CSR at a DNA precleavage step and with a partial disturbance of the SHM pattern in three patients with hyper-IgM syndrome. Together with the finding that nuclear UNG expression was induced in activated B cells, these data support a model of CSR and SHM in which AID deaminates cytosine into uracil in targeted DNA (immunoglobulin switch or variable regions), followed by uracil removal by UNG.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defective CSR in patients at a precleavage step.
Figure 2: SHM frequency and pattern in memory B cells from patients.
Figure 3: UNG mutations in patients.
Figure 4: Defective expression and function of UNG in EBV-LCLs of patients.

Similar content being viewed by others

References

  1. Manis, J.P., Tian, M. & Alt, F.W. Mechanism and control of class-switch recombination. Trends Immunol. 23, 31–39 (2002).

    Article  CAS  Google Scholar 

  2. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    Article  CAS  Google Scholar 

  3. Kinoshita, K. & Honjo, T. Linking class-switch recombination with somatic hypermutation. Nat. Rev. Mol. Cell Biol. 2, 493–503 (2001).

    Article  CAS  Google Scholar 

  4. Durandy, A. Hyper-IgM syndromes: a model for studying the regulation of class switch recombination and somatic hypermutation generation. Biochem. Soc. Trans. 30, 815–818 (2002).

    Article  CAS  Google Scholar 

  5. Korthauer, U. et al. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature 361, 539–541 (1993).

    Article  CAS  Google Scholar 

  6. DiSanto, J.P., Bonnefoy, J.Y., Gauchat, J.F., Fischer, A. & de Saint Basile, G. CD40 ligand mutations in X-linked immunodeficiency with hyper-IgM. Nature 361, 541–543 (1993).

    Article  CAS  Google Scholar 

  7. Aruffo, A. et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72, 291–300 (1993).

    Article  CAS  Google Scholar 

  8. Allen, R.C. et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259, 990–993 (1993).

    Article  CAS  Google Scholar 

  9. Ferrari, S. et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc. Natl. Acad. Sci. USA 98, 12614–12619 (2001).

    Article  CAS  Google Scholar 

  10. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  Google Scholar 

  11. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article  CAS  Google Scholar 

  12. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  Google Scholar 

  13. Bross, L., Muramatsu, M., Kinoshita, K., Honjo, T. & Jacobs, H. DNA double-strand breaks: prior to but not sufficient in targeting hypermutation. J. Exp. Med. 195, 1187–1192 (2002).

    Article  CAS  Google Scholar 

  14. Petersen, S. et al. AID is required to initiate Nbs1/g-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).

    Article  CAS  Google Scholar 

  15. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–104 (2002).

    Article  CAS  Google Scholar 

  16. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    Article  CAS  Google Scholar 

  17. Bransteitter, R., Pham, P., Scharff, M.D. & Goodman, M.F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA 100, 4102–4107 (2003).

    Article  CAS  Google Scholar 

  18. Ramiro, A.R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M.C. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat. Immunol. 4, 452–456 (2003).

    Article  CAS  Google Scholar 

  19. Rada, C. et al. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12, 1748–1755 (2002).

    Article  CAS  Google Scholar 

  20. Wuerffel, R.A., Du, J., Thompson, R.J. & Kenter, A.L. DNA-specific double strand breaks are induced in mitogen-activated B cells and are implicated in switch recombination. J. Immunol. 159, 4139–4144 (1997).

    CAS  PubMed  Google Scholar 

  21. Imai, K. et al. Hyper-IgM syndrome type 4 with a B lymphocyte-intrinsic selective deficiency in Ig class-switch recombination. J. Clin. Invest. 112, 136–142 (2003).

    Article  CAS  Google Scholar 

  22. Papavasiliou, F.N. & Schatz, D.G. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature 408, 216–221 (2000).

    Article  CAS  Google Scholar 

  23. Nilsen, H. et al. Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Res. 25, 750–755 (1997).

    Article  CAS  Google Scholar 

  24. Otterlei, M. et al. Nuclear and mitochondrial splice forms of human uracil-DNA glycosylase contain a complex nuclear localisation signal and a strong classical mitochondrial localisation signal, respectively. Nucleic Acids Res. 26, 4611–4617 (1998).

    Article  CAS  Google Scholar 

  25. Ehrenstein, M.R. & Neuberger, M.S. Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J. 18, 3484–3490 (1999).

    Article  CAS  Google Scholar 

  26. Schrader, C.E., Edelmann, W., Kucherlapati, R. & Stavnezer, J. Reduced isotype switching in splenic B cells from mice deficient in mismatch repair enzymes. J. Exp. Med. 190, 323–330 (1999).

    Article  CAS  Google Scholar 

  27. Castigli, E. et al. CD40-deficient mice generated by recombination-activating gene-2-deficient blastocyst complementation. Proc. Natl. Acad. Sci. USA 91, 12135–12139 (1994).

    Article  CAS  Google Scholar 

  28. Xu, J. et al. Mice deficient for the CD40 ligand. Immunity 1, 423–431 (1994).

    Article  CAS  Google Scholar 

  29. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  Google Scholar 

  30. Di Noia, J. & Neuberger, M.S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–48 (2002).

    Article  CAS  Google Scholar 

  31. Yu, K., Chedin, F., Hsieh, C.L., Wilson, T.E. & Lieber, M.R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 (2003).

    Article  CAS  Google Scholar 

  32. Shinkura, R. et al. The influence of transcriptional orientation on endogenous switch region function. Nat. Immunol. 4, 435–441 (2003).

    Article  CAS  Google Scholar 

  33. Fugmann, S.D. & Schatz, D.G. RNA AIDs DNA. Nat. Immunol. 4, 429–430 (2003).

    Article  CAS  Google Scholar 

  34. Doi, T., Kinoshita, K., Ikegawa, M., Muramatsu, M. & Honjo, T. De novo protein synthesis is required for the activation-induced cytidine deaminase function in class-switch recombination. Proc. Natl. Acad. Sci. USA 100, 2634–2638 (2003).

    Article  CAS  Google Scholar 

  35. Vilkki, S. et al. Extensive somatic microsatellite mutations in normal human tissue. Cancer Res. 61, 4541–4544 (2001).

    CAS  PubMed  Google Scholar 

  36. Wang, Q. et al. Neurofibromatosis and early onset of cancers in hMLH1-deficient children. Cancer Res. 59, 294–297 (1999).

    CAS  PubMed  Google Scholar 

  37. Whiteside, D. et al. A homozygous germ-line mutation in the human MSH2 gene predisposes to hematological malignancy and multiple cafe-au-lait spots. Cancer Res. 62, 359–362 (2002).

    CAS  PubMed  Google Scholar 

  38. Bougeard, G. et al. Early onset brain tumor and lymphoma in MSH2-deficient children. Am. J. Hum. Genet. 72, 213–216 (2003).

    Article  CAS  Google Scholar 

  39. Muller, S.J. & Caradonna, S. Isolation and characterization of a human cDNA encoding uracil-DNA glycosylase. Biochim. Biophys. Acta 1088, 197–207 (1991).

    Article  CAS  Google Scholar 

  40. Muller, S.J. & Caradonna, S. Cell cycle regulation of a human cyclin-like gene encoding uracil-DNA glycosylase. J. Biol. Chem. 268, 1310–1319 (1993).

    CAS  PubMed  Google Scholar 

  41. Nilsen, H. et al. Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase. EMBO J. 20, 4278–4286 (2001).

    Article  CAS  Google Scholar 

  42. Neddermann, P. et al. Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J. Biol. Chem. 271, 12767–12774 (1996).

    Article  CAS  Google Scholar 

  43. Hendrich, B., Hardeland, U., Ng, H.H., Jiricny, J. & Bird, A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401, 301–304 (1999).

    Article  CAS  Google Scholar 

  44. Bardwell, P.D. et al. Cutting edge: the G-U mismatch glycosylase methyl-CpG binding domain 4 is dispensable for somatic hypermutation and class switch recombination. J. Immunol. 170, 1620–1624 (2003).

    Article  CAS  Google Scholar 

  45. Durandy, A. et al. Abnormal CD40-mediated activation pathway in B lymphocytes from patients with hyper-IgM syndrome and normal CD40 ligand expression. J. Immunol. 158, 2576–2584 (1997).

    CAS  PubMed  Google Scholar 

  46. Kvaloy, K. et al. Sequence variation in the human uracil-DNA glycosylase (UNG) gene. Mutat. Res. 461, 325–338 (2001).

    Article  CAS  Google Scholar 

  47. Slupphaug, G. et al. Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase. Biochemistry 34, 128–138 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Hermine (Paris, France) and M. Endou (Iwate, Japan) for referral of patients. This work was supported by grants from Institut National de la Santé et de la Recherche Médicale, Association pour la Recherche sur le Cancer, la Ligue Contre le Cancer, the European Economic Community (contract QLG1-CT- 2001-01536- IMPAD), the Research Council of Norway, the Norwegian Cancer Association, the Svanhild and Arne Must Fund for Medical Research and the Louis Jeantet Foundation, and by grants from the National Institutes of Health (HD 17427-33), the March of Dimes Birth Defects Foundation (96-0330), the Immunodeficiency Foundation and the Jeffrey-Modell Foundation. P.R. is a scientist from Centre National de la Recherche Scientifique (Paris, France). N.C. is supported by the Association pour la Recherche sur le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Durandy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, K., Slupphaug, G., Lee, WI. et al. Human uracil–DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 4, 1023–1028 (2003). https://doi.org/10.1038/ni974

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni974

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing