Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs

Abstract

Myofibroblasts are the major source of extracellular matrix components that accumulate during tissue fibrosis, and hepatic stellate cells (HSCs) are believed to be the major source of myofibroblasts in the liver. To date, robust systems to genetically manipulate these cells have not been developed. We report that Cre under control of the promoter of Pdgfrb (Pdgfrb-Cre) inactivates loxP-flanked genes in mouse HSCs with high efficiency. We used this system to delete the gene encoding αv integrin subunit because various αv-containing integrins have been suggested as central mediators of fibrosis in multiple organs. Such depletion protected mice from carbon tetrachloride–induced hepatic fibrosis, whereas global loss of β3, β5 or β6 integrins or conditional loss of β8 integrins in HSCs did not. We also found that Pdgfrb-Cre effectively targeted myofibroblasts in multiple organs, and depletion of the αv integrin subunit using this system was protective in other models of organ fibrosis, including pulmonary and renal fibrosis. Pharmacological blockade of αv-containing integrins by a small molecule (CWHM 12) attenuated both liver and lung fibrosis, including in a therapeutic manner. These data identify a core pathway that regulates fibrosis and suggest that pharmacological targeting of all αv integrins may have clinical utility in the treatment of patients with a broad range of fibrotic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pdgfrb-Cre effectively targets recombination in quiescent and activated HSCs.
Figure 2: Depletion of the αv integrin on HSCs protects mice from CCl4-induced hepatic fibrosis.
Figure 3: αv integrin depletion on HSCs inhibits profibrotic gene expression through a reduction in TGF-β activation.
Figure 4: Global loss of β3, β5 or β6 integrins or conditional loss of β8 integrins on HSCs does not protect mice from CCl4-induced hepatic fibrosis.
Figure 5: Pdgfrb-Cre–mediated depletion of the αv integrin is protective in multiple models of solid organ fibrogenesis.
Figure 6: Blockade of αv integrins by a small molecule (CWHM 12) attenuates liver and lung fibrosis.

Similar content being viewed by others

References

  1. Gleizes, P.E. et al. TGF-β latency: biological significance and mechanisms of activation. Stem Cells 15, 190–197 (1997).

    CAS  PubMed  Google Scholar 

  2. Munger, J.S. et al. Latent transforming growth factor-β: structural features and mechanisms of activation. Kidney Int. 51, 1376–1382 (1997).

    CAS  PubMed  Google Scholar 

  3. Munger, J.S. et al. The integrin αvβ6 binds and activates latent TGFβ1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    CAS  PubMed  Google Scholar 

  4. Mu, D. et al. The integrin αvβ8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-β1. J. Cell Biol. 157, 493–507 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Annes, J.P., Rifkin, D.B. & Munger, J.S. The integrin αvβ6 binds and activates latent TGFβ3. FEBS Lett. 511, 65–68 (2002).

    CAS  PubMed  Google Scholar 

  6. Aluwihare, P. et al. Mice that lack activity of αvβ6- and αvβ8-integrins reproduce the abnormalities of Tgfb1- and Tgfb3-null mice. J. Cell Sci. 122, 227–232 (2009).

    CAS  PubMed  Google Scholar 

  7. Wang, B. et al. Role of αvβ6 integrin in acute biliary fibrosis. Hepatology 46, 1404–1412 (2007).

    CAS  PubMed  Google Scholar 

  8. Hahm, K. et al. αv βa6 integrin regulates renal fibrosis and inflammation in Alport mouse. Am. J. Pathol. 170, 110–125 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma, L.J. et al. Transforming growth factor-β-dependent and -independent pathways of induction of tubulointerstitial fibrosis in β6−/− mice. Am. J. Pathol. 163, 1261–1273 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Breuss, J.M., Gillett, N., Lu, L., Sheppard, D. & Pytela, R. Restricted distribution of integrin β6 mRNA in primate epithelial tissues. J. Histochem. Cytochem. 41, 1521–1527 (1993).

    CAS  PubMed  Google Scholar 

  11. Breuss, J.M. et al. Expression of the β6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling. J. Cell Sci. 108, 2241–2251 (1995).

    CAS  PubMed  Google Scholar 

  12. Shi, M. et al. Latent TGF-β structure and activation. Nature 474, 343–349 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wipff, P.J., Rifkin, D.B., Meister, J.J. & Hinz, B. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Munger, J.S., Harpel, J.G., Giancotti, F.G. & Rifkin, D.B. Interactions between growth factors and integrins: latent forms of transforming growth factor-β are ligands for the integrin αvβ1 . Mol. Biol. Cell 9, 2627–2638 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Asano, Y. et al. Increased expression of integrin αvβ3 contributes to the establishment of autocrine TGF-β signaling in scleroderma fibroblasts. J. Immunol. 175, 7708–7718 (2005).

    CAS  PubMed  Google Scholar 

  16. Asano, Y., Ihn, H., Yamane, K., Jinnin, M. & Tamaki, K. Increased expression of integrin αvβ5 induces the myofibroblastic differentiation of dermal fibroblasts. Am. J. Pathol. 168, 499–510 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Friedman, S.L. & Arthur, M.J. Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors. J. Clin. Invest. 84, 1780–1785 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pinzani, M., Gesualdo, L., Sabbah, G.M. & Abboud, H.E. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J. Clin. Invest. 84, 1786–1793 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wong, L., Yamasaki, G., Johnson, R.J. & Friedman, S.L. Induction of β-platelet–derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J. Clin. Invest. 94, 1563–1569 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pinzani, M. et al. Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am. J. Pathol. 148, 785–800 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ikura, Y. et al. Expression of platelet-derived growth factor and its receptor in livers of patients with chronic liver disease. J. Gastroenterol. 32, 496–501 (1997).

    CAS  PubMed  Google Scholar 

  22. Coin, P.G. et al. Lipopolysaccharide up-regulates platelet-derived growth factor (PDGF) α-receptor expression in rat lung myofibroblasts and enhances response to all PDGF isoforms. J. Immunol. 156, 4797–4806 (1996).

    CAS  PubMed  Google Scholar 

  23. Bonner, J.C. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 15, 255–273 (2004).

    CAS  PubMed  Google Scholar 

  24. Chen, Y.T. et al. Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int. 80, 1170–1181 (2011).

    CAS  PubMed  Google Scholar 

  25. Foo, S.S. et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124, 161–173 (2006).

    CAS  PubMed  Google Scholar 

  26. de Leeuw, A.M., McCarthy, S.P., Geerts, A. & Knook, D.L. Purified rat liver fat-storing cells in culture divide and contain collagen. Hepatology 4, 392–403 (1984).

    CAS  PubMed  Google Scholar 

  27. Friedman, S.L., Roll, F.J., Boyles, J. & Bissell, D.M. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc. Natl. Acad. Sci. USA 82, 8681–8685 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Muzumdar, M.D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    CAS  PubMed  Google Scholar 

  29. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    CAS  PubMed  Google Scholar 

  30. Abe, M. et al. An assay for transforming growth factor-β using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. Anal. Biochem. 216, 276–284 (1994).

    CAS  PubMed  Google Scholar 

  31. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    CAS  PubMed  Google Scholar 

  32. Zhu, J. et al. β8 integrins are required for vascular morphogenesis in mouse embryos. Development 129, 2891–2903 (2002).

    CAS  PubMed  Google Scholar 

  33. Fässler, R. & Meyer, M. Consequences of lack of β1 integrin gene expression in mice. Genes Dev. 9, 1896–1908 (1995).

    PubMed  Google Scholar 

  34. Stephens, L.E. et al. Deletion of β1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev. 9, 1883–1895 (1995).

    CAS  PubMed  Google Scholar 

  35. Abraham, S., Kogata, N., Fässler, R. & Adams, R.H. Integrin β1 subunit controls mural cell adhesion, spreading, and blood vessel wall stability. Circ. Res. 102, 562–570 (2008).

    CAS  PubMed  Google Scholar 

  36. Hinz, B. et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am. J. Pathol. 180, 1340–1355 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Armulik, A., Genové, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    CAS  PubMed  Google Scholar 

  38. Patsenker, E. et al. Pharmacological inhibition of integrin αvβ3 aggravates experimental liver fibrosis and suppresses hepatic angiogenesis. Hepatology 50, 1501–1511 (2009).

    CAS  PubMed  Google Scholar 

  39. Ignotz, R.A. & Massagué, J. Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J. Biol. Chem. 261, 4337–4345 (1986).

    CAS  PubMed  Google Scholar 

  40. Roberts, A.B. et al. Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl. Acad. Sci. USA 83, 4167–4171 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Leask, A. & Abraham, D.J. TGF-β signaling and the fibrotic response. FASEB J. 18, 816–827 (2004).

    CAS  PubMed  Google Scholar 

  42. Lacy-Hulbert, A. et al. Ulcerative colitis and autoimmunity induced by loss of myeloid αv integrins. Proc. Natl. Acad. Sci. USA 104, 15823–15828 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Proctor, J.M., Zang, K., Wang, D., Wang, R. & Reichardt, L.F. Vascular development of the brain requires β8 integrin expression in the neuroepithelium. J. Neurosci. 25, 9940–9948 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hodivala-Dilke, K.M. et al. β3-integrin–deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest. 103, 229–238 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang, X., Griffiths, M., Wu, J., Farese, R.V. Jr. & Sheppard, D. Normal development, wound healing, and adenovirus susceptibility in β5-deficient mice. Mol. Cell. Biol. 20, 755–759 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang, X.Z. et al. Inactivation of the integrin β6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin. J. Cell Biol. 133, 921–928 (1996).

    CAS  PubMed  Google Scholar 

  47. Henderson, N.C. et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc. Natl. Acad. Sci. USA 103, 5060–5065 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Henderson, N.C. et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am. J. Pathol. 172, 288–298 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. McCarty, J.H. et al. Selective ablation of αv integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development 132, 165–176 (2005).

    CAS  PubMed  Google Scholar 

  50. Nagarajan, S.R. et al. R-isomers of Arg-Gly-Asp (RGD) mimics as potent αvβ3 inhibitors. Bioorg. Med. Chem. 15, 3783–3800 (2007).

    CAS  PubMed  Google Scholar 

  51. Shannon, K.E. et al. Anti-metastatic properties of RGD-peptidomimetic agents S137 and S247. Clin. Exp. Metastasis 21, 129–138 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Wellcome Trust Intermediate Clinical Fellowship (ref. 085187) to N.C.H., National Institutes of Health grants HL102292, HL53949 and AI077439 (to D.S.), a University of California, San Francisco (UCSF) Liver Center Tool and Technology grant (to N.C.H) and P30 DK026743 (UCSF Liver Center). We thank K. Thorn at the UCSF Nikon Imaging Center for assistance with image analysis. We also thank C. Her, N. Wu, S. Huling, D. Rodrigues and R. Aucott for expert technical assistance. We also acknowledge the contribution of M. Singh (chemical synthesis of compounds CWHM 12 and CWHM 96), D. Tajfirouz, S. Freeman and M. Yates at Saint Louis University for technical assistance in conducting integrin functional assays to characterize compound activities. L. Reichardt (UCSF) provided Itgb8flox/flox mice and R. Hynes (Massachusetts Institute of Technology) provided Itgb3−/− mice on 129/svJae background. S. Violette (Biogen Idec) provided antibody to αvβ6 (human/mouse chimeric 2A1), W. Stallcup (Sanford-Burnham Medical Research Institute) provided antibody to PDGFR-β and H. Yagita (Juntendo University) provided antibody to αv integrin (clone RMV-7).

Author information

Authors and Affiliations

Authors

Contributions

N.C.H. and D.S. conceived and designed the project. N.C.H. performed the experiments with assistance from T.D.A., Y.K., M.M.G., J.D.R. and A.P.; J.H.M. contributed reagents; P.G.R., D.W.G. and M.J.P. designed and synthesized the small molecule αv integrin inhibitor (CWHM 12) and performed the ligand-binding studies to characterize the in vitro potency of CWHM 12; J.J.M. and J.P.I. contributed reagents and provided substantial intellectual contribution; E.R. and C.B. contributed Pdgfrb-BAC-eGFP knock-in reporter mice; A.L.-H. contributed Itgavflox/flox mice; R.H.A. contributed Pdgfrb-Cre mice; N.C.H., T.D.A., Y.K., M.M.G. and D.S. analyzed data and N.C.H., J.P.I. and D.S. wrote the manuscript.

Corresponding authors

Correspondence to Neil C Henderson or Dean Sheppard.

Ethics declarations

Competing interests

P.G.R. and D.W.G. hold equity in Antegrin Therapeutics, LLC.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Methods (PDF 4801 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, N., Arnold, T., Katamura, Y. et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19, 1617–1624 (2013). https://doi.org/10.1038/nm.3282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing