Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Presence of hematopoietic stem cells in the adult liver

Abstract

Recently, cases have been reported in which a mixed chimeric state of blood cells is established after liver transplantation. Because the established chimerism may have aided in the induction of donor–specific tolerance, the mechanism responsible for this chimerism is of clinical importance. To establish this, we examined cells in adult mouse liver and identified the presence of c–kit+ Sca–1+ Linlo/− cells. These cells were capable of forming in vivo as well as in vitro colonies. Furthermore, the cells could reconstitute bone marrow of lethally irradiated recipient mice for at least 12 months. These data obtained from the mouse study strongly suggest that hematopoietic stem cells residing in the donor liver are responsible for mixed chimerism and maintenance of tolerance after liver transplantation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Billingham, R.E., Brent, L. & Medawar, P.B. Actively acquired tolerance of foreign cells. Nature 172, 603–605 (1953).

    Article  CAS  Google Scholar 

  2. Starzl, T.E. et al. Cell migration, chimerism, and graft acceptance. Lancet 339, 1579–1582 (1992).

    Article  CAS  Google Scholar 

  3. Starzl, T.E. et al. Chimerism after liver transplantation for type IV glycogen storage disease and type I Gauchers disease. N. Engl. J. Med. 328, 745–749 (1993).

    Article  CAS  Google Scholar 

  4. Starzl, T.E. et al. Donor cell chimerism permitted by immimosuppressive drugs: A new view of organ transplantation. Immunol. Today. 14, 326–332 (1993).

    Article  CAS  Google Scholar 

  5. Demetris, A.J. et al. Hematolymphoid cell trafficking, microchimerism, and GVHD reactions after liver, bone marrow, and heart transplantation. Transplant. Proc. 25, 3337–3344 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Qian, S. et al. Murine liver allograft transplantation: Tolerance and donor cell chimerism. Hepatology 19, 916–924 (1994).

    Article  CAS  Google Scholar 

  7. Rasmussen, A. et al. Combined transplantation of liver and kidney from the same donor protects the kidney from rejection and improves kidney graft survival. 6th Congress of the European Society for Organ Transplantation, Rodos, Greece, Oct 25–28, 1993 (abstr.).

  8. Starzl, T.E. et al. Evolution of liver transplantation. Hepatology 2, 614–624 (1982).

    Article  CAS  Google Scholar 

  9. Markus, B.H. et al. Histocompatibility and liver transplnt outcome-Dose HLA exert a dualistic effect? Transplantation 46, 372–377 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kamada, N., Bros, G. & Davies, H.S. Fully allogeneic liver grafting in rats induces a state of systemic nonreactivity to donor transplantation antigens. Transplantation 29, 429–431 (1980).

    Article  CAS  Google Scholar 

  11. Kamada, N., Davies, H.S. & Koser, B. Reversal of transplantation immunity by liver grafting. Nature 292, 840–842 (1981).

    Article  CAS  Google Scholar 

  12. Calne, R. & Davies, H.S. Organ graft tolerance: Liver effect. Lancet 343, 67–68 (1994).

    Article  CAS  Google Scholar 

  13. Taniguchi, H., Toyoshima, T., Fukao, K. & Nakauchi, H. Evidence for the presence of hematopoietic stem cells in the adult liver. Transplant. Proc. 27, 196–199 (1995).

    CAS  PubMed  Google Scholar 

  14. Okada, S. et al. In vivo and in vitro stem cell function of c-kit and Sca-1-positive murine hepopoietic cells. Blood 80, 3044–3050 (1992).

    CAS  PubMed  Google Scholar 

  15. Ema, H., Suda, T., Miura, Y. & Nakauchi, H. Colony formation of clone-sorted human hematopoietic progenitors. Blood 75, 1941–1946 (1990).

    CAS  PubMed  Google Scholar 

  16. Korbling, M. et al. Albumin density gradient purification of canine hemopoietic blood stem cells (HBSC): Long-term allogeneic engraftment without GVH-reaction. Exp. Hematol. 7, 277–288 (1979).

    CAS  PubMed  Google Scholar 

  17. Schmitz, N. et al. Primary transplantation of allogeneic peripheral blood prog-enitor cells mobilized by filgrastim (granulocyte colony-stimulating factor). Blood. 85, 1666–1672 (1995).

    CAS  PubMed  Google Scholar 

  18. Dunbar, C.E. et al. Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood. 85, 3048–3057 (1995).

    CAS  PubMed  Google Scholar 

  19. Brecher, G., Ansel, J.D., Micklem, H.S., Tjio, J.H. & Cronkite, E.P. Special proliferative sites are not needed for seeding and proliferation of transfused bone marrow cells in normal syngeneic mice. Proc. Natl. Acad. Sci. USA 79, 5085–5087 (1982).

    Article  CAS  Google Scholar 

  20. Saxe, D.F., Boggs, S.S. & Boggs, D.R. Transplantation of chromosomally marked syngeneic marrow cells into mice not subjected to hematopoietic stem cell depletion. Exp. Hematol. 12, 277–283 (1984).

    CAS  PubMed  Google Scholar 

  21. Stewart, F.M., Crittenden, R.B., Lowry, P.A., Pearson-White, S. & Quesenberry, P.J. Long-term engraftment of normal and post-5-fluorouracil murine marrow into normal nonmyeloablated mice. Blood 81, 2566–2571 (1993).

    CAS  PubMed  Google Scholar 

  22. Lu, L., Xial, M., Shen, R., Grigsby, S. & Broxmeyer, H.E., Enrichment, characterization, and responsiveness of single primitive CD34+++ human umbilical cord blood hematopoietic progenitors with high proliferative and replating potential. Blood 81, 41–48 (1993).

    CAS  PubMed  Google Scholar 

  23. Taniguchi, H., Jinzenji, Y., Fukao, K. & Nakauchi, H. Hematopoietic stem cell chimerism: Relationships between degree of chimerism, T cell clonal deletion, and graft survival. Transplant. Proc. 26, 1966–1968 (1994).

    CAS  PubMed  Google Scholar 

  24. Taniguchi, H., Abe, M., Shirai, T., Fukao, K. & Nakauchi, H., Ratio is critical for alloreactive T cell deletion and skin graft survival in mixed bone marrow chimeras. J. Immunol. 155, 5631–5636 (1995).

    CAS  PubMed  Google Scholar 

  25. Scheid, M.P. & Triglia, D. Further descripton of the Ly-5 system. Immunogenetics 9, 423–433 (1979).

    Article  Google Scholar 

  26. Morce, H.C., Shen, F.W. & Hammerling, U. Nomenclature for loci controlling mouse lymphocyte antigens. Immunogenetics 23, 71–78 (1987).

    Article  Google Scholar 

  27. Coffman, B. Surface antigen expression and immunoglobulin rearrangement during mouse pre-B cell development. Immunol. Rev. 69, 5–23 (1982).

    Article  CAS  Google Scholar 

  28. Springer, T., Galfre, G., Secher, D.S. & Milstein, C. Mac-1: A macrophage differentiation antigen identified by monoclonal antibody. Eur. J. Immunol. 9, 301–306 (1979).

    Article  CAS  Google Scholar 

  29. Holms, K.L. et al. Analysis of neoplasms induced by Cas-Br-M MuLV tumor extracts. J. Immunol. 137, 679–688 (1986).

    Google Scholar 

  30. Dialynas, D.P. et al. Characterization of the murine antigenic determinant, designated L3T4a, recognized by monoclonal antibody GK1. 5: Expression of L3T4a by functional T cell clones appears to correlate primarily with class II MHC antigen-reactivity. Immunol. Rev. 74, 29–56 (1983).

    Article  CAS  Google Scholar 

  31. Ledbetter, J., Rouse, R., Micklem, H.S. & Herzenberg, L.A. T cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens. J. Exp. Med. 152, 280–295 (1980).

    Article  CAS  Google Scholar 

  32. Ikuta, K. et al. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62, 863–874 (1990).

    Article  CAS  Google Scholar 

  33. Nishikawa, S. et al. In utero manipulation of coat color formation by a monoclonal anti-c-kit antibody: Two distinct waves of c-kit dependency during melanocyte development. EMBO J. 10, 2111–2118 (1991).

    Article  CAS  Google Scholar 

  34. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  Google Scholar 

  35. Shen, F.W. Monoclonal Antibodies and T-cell Hybridomas: Perspectives and Technical Advancesl (Amsterdam) 25 (Elsevier/North-Holland Biomedica, 1981).

    Google Scholar 

  36. Hardy, R.R. Purification and coupling of fluorescent proteins for use in flow cytometry. in Handbook of Experimental Immunology 4th edn (ed. Weir, D.M.) ch. 31 (Blackwell Scientific Publications, Oxford, 1986).

    Google Scholar 

  37. Philip, A.L., Zsebo, K.M., Deacon, D.H., Eichman, C.E. & Quesenberry, P.J. Effects of rrSCF on multiple cytokine responsive HPP-CFC generated from SCA+Lin- murine hematopoietic progenitors. Exp. Hematol. 19, 994–996 (1991).

    Google Scholar 

  38. Philip, A.L., Deacon, D.H., Whitefield, P., McGrath, H.E. & Quesenberry, P.J. Stem cell factor induction of in vitro murine hematopoietic colony formation by “subliminal” cytokine combinations: The role of “anchor factors“. Blood 80, 663–669 (1992).

    Google Scholar 

  39. Till, J.E. & McCulloch, E.A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14, 213–220 (1961).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taniguchi, H., Toyoshima, T., Fukao, K. et al. Presence of hematopoietic stem cells in the adult liver. Nat Med 2, 198–203 (1996). https://doi.org/10.1038/nm0296-198

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0296-198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing