Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ detection of tissue factor in vascular endothelial cells: Correlation with the malignant phenotype of human breast disease

Abstract

Expression of tissue factor (TF) in the endothelium has been observed only rarely in human disease and has been thought to be elaborated on the surface of vascular endothelial cells (VECs) in vitro as an artifact of tissue culture. Using monoclonal antibodies and a novel probe for functional TF, we have localized TF to the VECs (and tumor cells) within the tumors of seven patients with invasive breast cancer but not in the VECs (or tumor cells) of benign tumors from ten patients with fibrocystic disease of the breast. The potent procoagulant TF was shown to be a marker of the initiation of angiogenesis in human breast cancer. Further evidence that the TF was the demonstration of a similar distribution of cross–linked fibrin only in the VECs of the malignant tumors. We interpret these data as further support for the concept that tumor cells can activate nearby VECs and regulate blood vessel growth in vivo. Large clinicalpathologic studies will be necessary to determine whether TF is a useful marker for the “switch to the angiogenic phenotype” in human breast disease and/or correlates with the thromboembolic complications of breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–31 (1995).

    Article  CAS  Google Scholar 

  2. Weidner, N. et al. Tumor angiogenesis: A new significant and independent prognostic indicator in early-stage breast carcinoma. J. Natl. Cancer Inst. 84, 1875–1887 (1992).

    Article  CAS  Google Scholar 

  3. Van Hoef, M.E.H.M., Knox, W.F., Dhesi, S.S., Howell, A. & Schor, A.M. Assessment of tumour vascularity as a prognostic factor in lymph node negative invasive breast cancer. Eur. J. Cancer 29A, 1141–1145 (1993).

    CAS  PubMed  Google Scholar 

  4. Gasparini, G. et al. Tumor microvessel density, p53 expression, tumor size and peritumoral lymphatic vessel invasion are relevant prognostic markers in node-negative breast carcinoma. J. Clin. Oncol. 12, 454–466 (1994).

    Article  CAS  Google Scholar 

  5. Folkman, J. Angiogenesis and breast cancer. J. Clin. Oncol. 12, 441–443 (1994).

    Article  CAS  Google Scholar 

  6. Weidner, N., Carroll, P.R., Flax, J., Blumenfeld, W. & Folkman, J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am. J. Pathol. 143, 401–409 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, V.W. et al. Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumors. Lancet 344, 82–86 (1994).

    Article  CAS  Google Scholar 

  8. Nemerson, Y. Tissue factor and hemostasis. Blood 71, 1–8 (1988).

    CAS  PubMed  Google Scholar 

  9. Rickles, F.R., Levine, M.N. & Edwards, R.L. Hemostatic alterations in cancer patients. Cancer Metastasis Rev. 11, 237–248 (1992).

    Article  CAS  Google Scholar 

  10. Dvorak, H.F., Dickersin, G.R., Dvorak, A.M., Manseau, J.E. & Pyne, K. Human breast carcinoma: Fibrin deposits and desmoplasia. J. Natl. Cancer Inst. 67, 335–340 (1981).

    CAS  PubMed  Google Scholar 

  11. Maynard, J.R., Dreyer, B.E., Stemerman, M.B. & Pitlick, F.A. Tissue factor coagulant activity of cultured human endothelial and smooth muscle cells and fibroblasts. Blood 50, 387–396 (1977).

    CAS  PubMed  Google Scholar 

  12. Stern, D.M., Nawroth, P.P., Handley, D. & Kisiel, W. An endothelial cell-dependent pathway of coagulation. Proc. Natl. Acad. Sci. USA 82, 2523–2527 (1982).

    Article  Google Scholar 

  13. Colucci, M. et al. Cultured human endothelial cells generate tissue factor in response to endotoxin. J. Clin. Invest. 71, 1893–1896 (1983).

    Article  CAS  Google Scholar 

  14. Lyberg, T., Galdal, K.S., Evensen, S.A. & Prydz, H. Cellular cooperation in endothelial thromboplastin synthesis. Br. J. Haematol. 53, 85–95 (1983).

    Article  CAS  Google Scholar 

  15. Bevilacqua, M.P., Pober, J.S., Majeau, G.R., Cotran, R.S. & Gimbrone, M.A., Jr., Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial Cells. J. Exp. Med. 160, 618–623 (1984).

    Article  CAS  Google Scholar 

  16. Tannenbaum, S.H., Finko, R. & Cines, D.B. Antibody and immune complexes induce tissue factor production by human endothelial cells. J. Immunol. 137, 1532–1537 (1986).

    CAS  PubMed  Google Scholar 

  17. Conway, E.M., Bach, R., Rosenberg, R.D. & Konigsberg, W.H. Tumor necrosis factor enhances expression of tissue factor mRNA in endothelial cells. Thromb. Res. 53, 231–241 (1989).

    Article  CAS  Google Scholar 

  18. Crossman, D.C., Carr, D.P., Tuddenham, E.G.D., Pearson, J.D. & McVey, J.H. The regulation of tissue factor mRNA in human endothelial cells in response to endotoxin or phorbol ester. J. Biol. Chem. 265, 9782–9787 (1990).

    CAS  PubMed  Google Scholar 

  19. Kirchhofer, D. et al. Relationship between tissue factor expression and deposition of fibrin, platelets and leukocytes on cultured endothelial Cells under venous blood flow conditions. Blood 81, 2050–2058 (1993).

    CAS  PubMed  Google Scholar 

  20. Wilcox, J.N., Smith, K.M., Schwartz, S.M. & Gordon, D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc. Natl. Acad. Sci. USA 86, 2839–2843 (1989).

    Article  CAS  Google Scholar 

  21. Drake, T.A., Morrissey, J.H. & Edgington, T.S., Selective Cellular expression of tissue factor in human tissues. Am. J. Pathol. 134, 1087–1097 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Drake, T.A., Cheng, J., Chang, A. & Taylor, F.B., Jr., Expression of tissue factor, thrombomodulin, and E-selectin in baboons with lethal Escherichia coli sepsis. Am. J. Pathol. 142, 1458–1470 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Faulk, W.P., Labarrere, C. & Carson, S. Tissue factor: Identification and characterization of cell types in human placentae. Blood 76, 86–96 (1990).

    CAS  PubMed  Google Scholar 

  24. Zhang, Y. et al. Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice. J. Clin. Invest. 94, 1320–1327 (1994).

    Article  CAS  Google Scholar 

  25. Rickles, F.R., Hancock, W.W., Edwards, R.L. & Zacharski, L.R. Antimetastatic agents. I. The role of Cellular procoagulants in the pathogenesis of fibrin deposition in cancer and the use of anticoagulants and/or antiplatelet drugs in cancer treatment. Semin. Thromb. Hemost. 14, 126–132 (1988).

    Article  CAS  Google Scholar 

  26. Contrino, J., Hair, G.A., Schmeizl, M.A., Rickles, F.R. & Kreutzer, D.L. In situ characterization of antigenic and functional tissue factor expression in human tumors utilizing monoclonal antibodies and recombinant factor Vila as probes. Am. J. Pathol. 145, 1315–1322 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Broze, G., Jr., Binding of human factor VII and VIIa to monocytes. J. Clin. Invest. 70, 526–536 (1982).

    Article  CAS  Google Scholar 

  28. Kudryk, B., Rohozza, A., Ahadi, M., Chin, J. & Wiebe, M.E. Specificity of a monoclonal antibody for the NH2 terminal region of fibrin. Mol. Immunol. 21, 89–94 (1984).

    Article  CAS  Google Scholar 

  29. Kudryk, B., Rohozza, A., Ahadi, M., Gidlund, M. & Harfenist, E.F. Antibodies specific for neoantigens expressed on chains or degradation products of fibrin (ogen). in Fibrinogen 3 — Biochemistry, Biological Functions, Gene Regulation and Expression. (eds. Mosesson, M.W., Armani, D.B, Siebenlist, K.R. & DiOrio, J.P.) 129–132 (Elsevier Science Publishers, Amsterdam, 1988).

    Google Scholar 

  30. Rickles, F.R. & Edwards, R. Leukocytes and tumor cells in thrombosis. inHemostasis and Thrombosis: Basic Principles and Clinical Practice. (eds. Colman, R.W., Hirsh, J., Marder, V.J. & Salzman, E.W.) 1164–1179 (Lippincott, Philadelphia, 1994).

    Google Scholar 

  31. Costantini, V. et al. Fibrinogen deposition without thrombin generation in primary human breast cancer tissue. Cancer Res. 51, 349–353 (1991).

    CAS  PubMed  Google Scholar 

  32. Callander, N.S., Varki, N. & Rao, L.V.M. Immunohistochemical identification of tissue factor in solid tumors. Cancer 70, 1194–1201 (1992).

    Article  CAS  Google Scholar 

  33. Noguchi, M., Sakai, T. & Kisiel, W. Identification and partial purification of a novel tumor-derived protein that induces tissue factor on cultured human endothelial cells. Biochem. Biophys. Res. Commun. 160, 222–226 (1989).

    Article  CAS  Google Scholar 

  34. Clauss, M. et al. Vascular permeability factor: A tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity and promotes monocyte migration. J. Exp. Med. 172, 1535–1545 (1990).

    Article  CAS  Google Scholar 

  35. Kao, J. et al. Endothelial monocyte-activating polypeptide II. Biochem. J. 267, 20239–20247 (1992).

    CAS  Google Scholar 

  36. Trousseau, A. Phlegmasia alba dolens. in Clinique de líHùtel-Dieu de Paris. vol. 3, 654–712 (Balliere et Fils, Paris, 1865).

    Google Scholar 

  37. Dvorak, H.F. Abnormalities of hemostasis in malignant disease in Hemostasis and Thrombosis: Bask Principles and Clinical Practice, (eds. Colman, R.W., Hirsh, J., Marder, V.J. & Salzman, E.W.) 1238–1254 (Lippincott, Philadelphia, 1994).

    Google Scholar 

  38. Miyauchi, S. et al. Malignant tumor cell lines produce interleukin-1-like factor. In Vitro Cell Dev. Biol. 24, 753–755 (1988).

    Article  CAS  Google Scholar 

  39. Brett, J. et al. Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins. J. Exp. Med. 169, 1977–1991 (1989).

    Article  CAS  Google Scholar 

  40. McKever, R.P. Leukocyte interactions mediated by selectins. Thromb. Haemost. 66, 80–87 (1991).

    Article  Google Scholar 

  41. Berse, B., Brown, L.F., Van De Water, L., Dvorak, H.F. & Senger, D.R. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol. Biol. Cell 3, 211–220 (1992).

    Article  CAS  Google Scholar 

  42. Janicke, F. et al. Urokinase (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer. Breast Cancer Res. Treat. 24, 195–208 (1993).

    Article  CAS  Google Scholar 

  43. Muss, H.B. et al. c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N. Engl. J. Med. 330, 1260–1266 (1994).

    Article  CAS  Google Scholar 

  44. Brown, L.F. et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer. Res. 53, 4727–4735 (1993).

    CAS  PubMed  Google Scholar 

  45. Morrissey, J.H., Fair, D.S. & Edgington, T.S. Monoclonal antibody analysis of purified and Cell-associated tissue factor. Thromb. Res. 52, 247–261 (1988).

    Article  CAS  Google Scholar 

  46. Ruf, W., Rehemtulla, A. & Edgington, T.S. Antibody mapping of tissue factor implicates two different exon-coded regions in function. Biochem. J. 278, 729–733 (1991).

    Article  CAS  Google Scholar 

  47. Ruf, W. & Edgington, T.S. An anti-tissue factor monoclonal antibody which inhibits TF-VIIa complex is a potent anticoagulant in plasma. Thromb. Haemost. 66, 529–533 (1992).

    Google Scholar 

  48. Williams, E.B., Krishnaswamy, S. & Mann, K.G. Zymogen/enzyme discrimination using peptide chloromethyl ketones. J. Biol. Chem. 264, 7536–7545 (1989).

    CAS  PubMed  Google Scholar 

  49. Guesdon, J.L., Ternynck, T. & Avrameus, S. The use of avidin-biotin interaction in immunoenzymatic techniques. J. Histochem. Cytochem. 27, 1131–1139 (1979).

    Article  CAS  Google Scholar 

  50. Sato, Y., Mukai, K., Watanable, S., Goto, M. & Shimosato, Y., The AMeX method. Am. J. Pathol. 125, 431. Pathol. Muk

  51. Reuning, U., Preissner, K.T., Muller-Berghaus, G. Two independent binding sites on monolayers of human endothelial cells are responsible for interaction with coagulation factor VII and factor VIIa. Thromb. Haemost. 69, 197–204 (1993).

    Article  CAS  Google Scholar 

  52. Hoffman, M., Monroe, D.M., Roberts, H.R. Human monocytes support factor X activation by factor Vila, independent of tissue factor: implications for the therapeutic mechanism of high-dose factor VIIa in hemophilia. Blood 83, 38–42 (1994).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contrino, J., Hair, G., Kreutzer, D. et al. In situ detection of tissue factor in vascular endothelial cells: Correlation with the malignant phenotype of human breast disease. Nat Med 2, 209–215 (1996). https://doi.org/10.1038/nm0296-209

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0296-209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing