Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo site-directed mutagenesis of the factor IX gene by chimeric RNA/DNA oligonucleotides

Abstract

A chimeric RNA/DNA oligonucleotide was constructed to induce a sequence mutation in the rat factor IX gene, resulting in prolonged coagulation. Oligonucleotides were targeted to hepato-cytes in cell culture or in vivo by intravenous injection. Nucleotide conversion was both site-specific and dose-dependent. The mutated gene was associated in vivo with significantly reduced factor IX coagulant activity and a marked prolongation of the activated partial thromboplastin time. The results demonstrate that single base-pair alterations can be introduced in hepatocytes in situ by RNA/DNA oligonucleotides, suggesting a potentially powerful strategy for hepatic gene repair without the use of viral vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chang, A.G.Y. & Wu, G.Y. Gene therapy: Applications to the treatment of gastrointestinal and liver diseases. Gastroenterology 106, 1076–1084 (1994).

    Article  CAS  Google Scholar 

  2. Teckman, J.H., Qu, D. & Perlmutter, D.H. Molecular pathogenesis of liver disease in α1-antitrypsin deficiency. Hepatology 24, 1504–1516 (1996).

    CAS  PubMed  Google Scholar 

  3. Reiner, A.P. & Davie, E.W., Metabolic and Molecular Bases of Inherited Disease. (eds. Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 3181–3221 (McGraw-Hill, Inc., New York, 1995).

    Google Scholar 

  4. Strauss, M. Liver-directed gene therapy: Prospects and problems. Gene Ther 1, 156–164 (1994).

    CAS  PubMed  Google Scholar 

  5. Bowles, N., Woo, S.L.C. Gene therapy for metabolic disorders. Advanced Drug Del. Rev. 17, 293–302 (1995).

    Article  CAS  Google Scholar 

  6. Askari, F.K., Hitomi, Y., Mao, M. & Wilson, J.M. Complete correction of hyperbiliru-binemia in the Gunn rat model of Crigler-Najjar syndrome type I following transient in vivo adenovirus-mediated expression of human bilirubin UDP-glucuronosyltrans-ferase. Gene Ther. 3, 381–388 (1996).

    CAS  PubMed  Google Scholar 

  7. Ye, X. et al. Prolonged metabolic correction in adult ornithine transcarbamylase-de-ficient mice with adenoviral vectors. J. Biol. Chem. 271, 3639–3646 (1996).

    Article  CAS  Google Scholar 

  8. Connelly, S., Gardner, J.M., Lyons, R.M., McClelland, A. & Kaleko, M. Sustained expression of therapeutic levels of human factor VIII in mice. Blood 87, 4671–4677 (1996).

    CAS  PubMed  Google Scholar 

  9. Takahashi, M. et al. Long term correction of bilirubin-UDP-glucuronosyltransferase deficiency in Gunn rats by administration of a recombinant adenovirus during the neonatal period, J. Biol. Chem. 271 26536–26542 (1996).

    Article  CAS  Google Scholar 

  10. IIan, Y. et al. Oral tolerization to adenoviral antigens permits long-term gene expression using recombinant adenoviral vectors. J. Clin. Invest. 99 1098–1106 (1997).

    Article  Google Scholar 

  11. Wang, G., Levy, D.D., Seidman, M.M. & Glazer, P.M. Targeted mutagenesis in mammalian cells mediated by intracellular triple helix formation. Mol. Cell. Biol.15, 1759-1768 (1995).

    Article  CAS  Google Scholar 

  12. Beal, P.A. & Dervan, P.B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 251, 1360–1363 (1991).

    Article  CAS  Google Scholar 

  13. Thomas, K.R. & Capecchi, M.R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 503–512 (1987)

    Article  CAS  Google Scholar 

  14. Zheng, H. & Wilson, J.H. Gene targeting in normal and amplified cell lines. Nature 344, 170–173 (1990).

    Article  CAS  Google Scholar 

  15. Sakagami, K., Tokinaga, Y., Yoshikura, H. & Kobayashi, I. Homology-associated non-homologous recombination in mammalian gene targeting. Proc. Natl. Acad. Sci. USA 91, 8527–8531 (1994).

    Article  CAS  Google Scholar 

  16. Yoon, K., Cole-Strauss, A. & Kmiec, E.B. Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA"DNA oligonucleotide. Proc. Natl. Acad. Sci. USA 93, 2071 2076 (1996).

  17. Cole-Strauss, A. et al. 273 1386–1389 (1996).

  18. Kmiec, E.B., Cole, A. & Holloman, W.K., REC2 gene encodes the homologous pairing protein of Ustilago maydis. Mol. Cell. Biol. 14, 7163–7172 (1994).

    Article  CAS  Google Scholar 

  19. Kotani, H. et al. RNA facilitates RecA-mediated DNA pairing and strand transfer between molecules bearing limited regions of homology. Mol. Gen. Genet. 250 626–634 (1996).

    Article  CAS  Google Scholar 

  20. Monia, B.P. et al. Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268, 14514–14522 (1993).

    CAS  Google Scholar 

  21. Shinohara, A., & Ogawa, T. Homologous recombination and the roles of double-strand breaks. Trends Biochem. Sci. 20, 387–391 (1995).

    Article  CAS  Google Scholar 

  22. Kolodner, R.D. Mismatch repair: Mechanisms and relationship to cancer susceptibility. Trends Biochem. Sci. 20, 397–401 (1995).

    Article  CAS  Google Scholar 

  23. Kren, B.T., Cole-Strauss, A., Kmiec, E.B. & Steer, C.J. Targeted nucleotide exchange in the alkaline phosphatase gene of HuH-7 cells mediated by a chimeric RNA/DNA oligonucleotide. Hepatology 25, 1462–1468 (1997).

    Article  CAS  Google Scholar 

  24. Boussif, O. et al. versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 92, 7297–7301 (1995).

    Article  CAS  Google Scholar 

  25. Sarkar, G., Koeberl, D.D. & Sommer, S.S. Direct sequencing of the activation pep-tide and the catalytic domain of the factor IX gene in six species. Genomics 6, 133–143 (1990).

    Article  CAS  Google Scholar 

  26. Wong, E.A. & Capecchi, M.R. Homologous recombination between coinjected DNA sequences peaks in early to mid-S phase. Mol. Cell. Biol. 7, 2294–2295 (1987).

    Article  CAS  Google Scholar 

  27. Yamamoto, A. et al. Cell cycle-dependent expression of the mouse RadSIgene in proliferating cells. Mol. Gen. Genet. 251,112 (1996).

  28. Stürzbecher, H.-W., Donzelmann, B., Henning, W., Kippschild, U. & Buchhop, S. p53 is linked directly to homologous recombination processes via RAD51 /RecA protein interaction. EMBOJ. 15, 1992–2002 (1996).

    Article  Google Scholar 

  29. Fang, W.-h. & Modrich, P. Human strand-specific mismatch repair occurs by a bidirectional mechanism similar to that of the bacterial reaction. J. Biol. Chem. 268, 11838–11844 (1993).

    CAS  PubMed  Google Scholar 

  30. Umar, A., Boyer, J.C. & Kunkel, T.A. DNA loop repair by human cell extracts. Science 266, 814–816 (1994).

    Article  CAS  Google Scholar 

  31. Klungland, A. & Lindahl, T. Second pathway for completion of human DNA base excision-repair: Reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBOJ. 16, 3341–3348 (1997).

    Article  CAS  Google Scholar 

  32. Wood, R.D. Nucleotide excision repair in mammalian cells. J. Biol. Chem. 272, 23465–23468 (1997).

    Article  CAS  Google Scholar 

  33. Wellinger, R.E. & Thoma, F. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene. EMBOJ. 16, 5046–5056 (1997).

    Article  CAS  Google Scholar 

  34. Bulla, G.A., DeSimone, V., Cortese, R. & Fournier, R.E. Extinction of arantitrypsin gene expression in somatic cell hybrids: Evidence for multiple controls. Genes Dev. 6, 316–327 (1992).

    Article  CAS  Google Scholar 

  35. Prouty, S.M. et al. A cell culture model system for genetic analyses of the cell cycle by targeted homologous recombination. Oncogene 8, 899–907 (1993).

    CAS  PubMed  Google Scholar 

  36. Arbonés, M.L., Austin, H.A., Capon, D.J. & Greenburg, G. Gene targeting in normal somatic cells: Inactivation of the interferon-y receptor in myoblasts. Nature Gen. 6, 90–97 (1994).

    Article  Google Scholar 

  37. Fan, G., Ma, X., Kren, B.T. & Steer, C.J. The retinoblastoma gene product inhibits TGF-ß1 induced apoptosis in primary rat hepatocytes and human HuH-7 hepatoma cells. Oncogene 12, 1909–1919 (1996).

    CAS  PubMed  Google Scholar 

  38. Gray, G.R. The direct coupling of oligosaccharides to proteins and derivatized gels. Arch. Biochem. Biophys. 163, 426–428 (1974).

    Article  CAS  Google Scholar 

  39. Abdallah, B. et al. A powerful nonviral vector for in vivogene transfer into the adult mammalian brain: Polyethylenimine. Hum. Gene Ther. 7, 1947–1954 (1996).

    Article  CAS  Google Scholar 

  40. Kren, B.T., Trembley, J.H.,& Steer, C.J. Alterations in mRNA stability during rat liver regeneration. Am. J. Physiol. 270, G763–G777 (1996).

    Article  CAS  Google Scholar 

  41. Melchior, W.B.,& Von Hippel, P.H. Alteration of the relative stability of dA.dT and dG.dC base pairs in DNA. Proc. Natl. Acad. Sci. USA 70, 298–302 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kren, B., Bandyopadhyay, P. & Steer, C. In vivo site-directed mutagenesis of the factor IX gene by chimeric RNA/DNA oligonucleotides. Nat Med 4, 285–290 (1998). https://doi.org/10.1038/nm0398-285

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0398-285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing