Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

In vivo imaging of oligonucleotides with positron emission tomography

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Zamecnik, P.C. & Stephenson, M.L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA 75, 280–284 (1978).

    Article  CAS  Google Scholar 

  2. Crooke, S.T. & Lebleu, B. . in. Antisense Research and Applications. 579 (CRC Press, Boca Raton, 1993).

  3. Matteucci, M.D. & Wagner, R.W. Inpursuit of antisense. Nature 384, 20–22 (1996).

    CAS  PubMed  Google Scholar 

  4. Stein, C.A. & Cheng, Y.C. Antisense oligonucleotides as therapeutic agents: Is the bullet really magical? Science 261, 1004–1012 (1993).

    Article  CAS  Google Scholar 

  5. Dewanjee, M.K. et al. Noninvasive imaging of c-myc oncogene messenger RNA with indium-111 -antisense probes in a mammary tumor-bearing mouse model. J. Nuc. Med. 35, 1054–1063 (1994).

    CAS  Google Scholar 

  6. Cammilleri, S. et al. Biodistribution d'un oligonucleotide phosphodiester radiomarqué (125l) chez la souris saine. Medecine Nucltaire 19, 20–24 (1995).

    Google Scholar 

  7. Cammilleri, S., et al. Biodistribution of iodine-125 tyramine transforming growth factor α antisense oligonucleotide in athymic mice with a human mammary tumour xenograft following intratumoral injection. Eur. J. Nuc. Med. 23, 448–452 (1996).

    Article  CAS  Google Scholar 

  8. Jones, T. The imaging science of positron emission tomography. Eur. J. Nuc. Med. 23, 807–813 (1996).

    Article  CAS  Google Scholar 

  9. Jones, T. The role of positron emission tomography within the spectrum of medical imaging. Eur. J. Nuc. Med. 23, 207–211 (1996).

    Article  CAS  Google Scholar 

  10. Dollé, F., Hinen, F., Vaufrey, F., Tavitian, B. & Crouzel, C. A general method for labeling oligodeoxynucleotides with 18F for in vivo PET imaging. J. Label. Compounds Radiopharm. 34, 319–330 (1997).

    Article  Google Scholar 

  11. Dollé, F. et al. Fluorine-18 labeled oligonucleotides for in vivo PET imaging. J. Label. Compounds Radiopharm. 40, 4–6 (1997).

    Google Scholar 

  12. Bendriem, B. et al. Evaluation of the ECAT EXACT HR+: A new positron camera with 2D/3D acquisition capabilities and nearly isotropic spatial resolution. J. Nuc. Med. 37, 170P (1996).

  13. Srinivasan, S.K. & Iversen, P. Review of in vivo pharmacokinetics and toxicology of phosphorothioate oligonucleotides. J. Clin. Lab. Anal. 9, 129–137 (1995).

    Article  CAS  Google Scholar 

  14. Agrawal, S., Temsamani, J., Galbraith, W. & Tang, J. Pharmacokinetics of antisense oligonucleotides. Clin. Pharmacokinet. 28, 7–16 (1995).

    Article  CAS  Google Scholar 

  15. Bijsterbosch, M.K. et al. In vivo fate of phosphorothioate antisense oligodeoxynucleotides: Predominant uptake by scavenger receptors on endothelial liver cells. Nucleic Acids Res. 25, 3290–3296 (1997).

    CAS  Google Scholar 

  16. Deverre, J.R. et al. A competitive enzyme hybridization assay for plasma determination of phosphodiester and phosphorothioate antisense oligonucleotides. Nucleic Acids Res. 25, 3584–3589 (1997).

    Article  CAS  Google Scholar 

  17. Geck, P., P. & N´sz, I. Concentrated, digestible DNA after hydroxylapatite chromatography with cetylpyridinium bromide precipitation. Anal. Biochem. 135, 264–268 (1983).

    Article  CAS  Google Scholar 

  18. Sambrook, J., Fritsch, E.F. & Maniatis, T., Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  19. Stein, D., Foster, E., Huang, S.-B., Weller, D. & Summerton, J. A specificity comparison of four antisense types: Morpholino, 2′:-O-methyl RNA, DNA, and phosphorothioate DNA. Antisense Nucleic Acid Drug Dev. 7, 151–157 (1997).

    Article  CAS  Google Scholar 

  20. Urbain, J.L. et al. Scintigraphic imaging of oncogenes with antisense probes: Does it make sense? Eur.J. Nuc. Med. 22, 499–504 (1995).

    Article  CAS  Google Scholar 

  21. Hildebrandt, M. & Reske, S.N. Prerequisites for the use of antisense oligonucleotides in nuclear medicine. NuklearMedizin 35, 126–131 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavitian, B., Terrazzino, S., Kühnast, B. et al. In vivo imaging of oligonucleotides with positron emission tomography. Nat Med 4, 467–471 (1998). https://doi.org/10.1038/nm0498-467

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0498-467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing