Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor–type integrins inhibits retinal neovascularization

Abstract

Retinal neovascularization is a major cause of blindness in such disorders as retinopathy of prematurity, proliferative diabetic retinopathy and senile macular degeneration. Because ligation of vitronectin receptor–type integrins appears to be required for the survival and maturation of newly formed but not quiescent blood vessels in several vascular beds including the retina, blockade of this downstream adhesion receptor system was investigated. In a mouse model of hypoxia–induced retinal neovascularization twice daily administration of 1 to 20 mg cyclic αv–integrin antagonist peptide per kilogram of body weight reduced capillary proliferation in a dose–dependent fashion — maximum 76% — without obvious side effects. A cyclic control peptide displayed no inhibitory effect on neovascularization. These findings indicate that systemic application of vitronectin receptor antagonists appears to be clinically feasible and is efficient in preventing retinal neovascularization and superior to cytokine–blocking strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Prost, M. Experimental studies on the pathogensis of retinopathy of prematurity. Br. J. Ophthalmol. 72, 363–367 (1988).

    Article  CAS  Google Scholar 

  2. Thylefors, B., Negrel, A.D., Pararajasegaram, R. & Dadzie, K.Y. Global data on blindness. Bull. World. Health. Organ. 73, 115–121 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Moss, S.E., Klein, R. & Klein, B.E. Ten-year incidence of visual loss in a diabetic population. Ophthalmology 101, 1061–1070 (1994).

    Article  CAS  Google Scholar 

  4. Brown, G.C., Brown, R.H. & Brown, M.M. Peripheral proliferative retinopathies. Int. Ophthalmol. 11, 41–50 (1987).

    Article  CAS  Google Scholar 

  5. The Diabetic retinopathy Study Group. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of DRS findings. Ophthalmology 88, 583–600 (1981).

  6. Stone, J. et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15, 4738–4747 (1995).

    Article  CAS  Google Scholar 

  7. Peèr, J. et al. Hypoxia-induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases. Lab. Invest. 72, 638–645 (1995).

    Google Scholar 

  8. Bischoff, J. Approaches to studying cell adhesion molecules in angiogenesis. Trends Cell Biol. 5, 69–74 (1995).

    Article  CAS  Google Scholar 

  9. Bacharach, E., Itin, A. & Keshet, E. In vivo patterns of expression of urokinase and its inhibitor PAI-1 suggest a concerted role in regulating physiological angiogenesis. Proc. Natl. Acad. Sci. USA 89, 10686–10690 (1992).

    Article  CAS  Google Scholar 

  10. Pierce, E.A., Avery, R.L., Foley, E.D., Aiello, L.P. & Smith, L.E.H. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc. Natl. Acad. Sci. USA 92, 905–909 (1995).

    Article  CAS  Google Scholar 

  11. Schultz, G.S. & Grant, M.B. Neovascular growth factors. Eye 5, 170–180 (1991).

    Article  Google Scholar 

  12. Pfeiffer, A. & Schatz, H. Diabetic microvascular complications and growth factors. Exp. Clin. Endocrinol. Diabetes 103, 7–14 (1995).

    Article  CAS  Google Scholar 

  13. Berka, J.L. et al. Renin-containing Mueller cells of the retina display endocrine features. Invest. Ophthalmol. Vis. Sci. 36, 1450–1458 (1995).

    CAS  PubMed  Google Scholar 

  14. Robbins, S.G. et al. Platelet-derived growth factor ligands and receptors immunolocalized in proliferative retinal diseases. Invest. Ophthalmol. Vis. Sci. 35, 3649–3663 (1994).

    CAS  PubMed  Google Scholar 

  15. Spranger, J., Meyer-Schwickerath, R., Klein, M., Schatz, H. & Pfeiffer, A. TNF-α level in the vitreous body: Increase in neovascular eye diseases and proliferative diabetic retinopathy. Med. Klin. 90, 134–137 (1995).

    CAS  Google Scholar 

  16. Leavesley, D.I., Ferguson, G.D., Wayner, E.A. & Cheresh, D.A. Requirement of the integrin β3 subunit for carcinoma cell spreading or migration on vitronectin and fibrinogen. J. Cell Biol. 117, 1101–1107 (1992).

    Article  CAS  Google Scholar 

  17. Felding-Habermann, B. & Cheresh, D.A. Vitronectin and its receptors. Curt. Opin. Cell Biol. 5, 864–868 (1993).

    Article  CAS  Google Scholar 

  18. Brooks, P.C., Clark, R.A.F. & Cheresh, D.A. Requirement of vascular integrin αvβ3 for angiogenesis. Science 264, 569–571 (1994).

    Article  CAS  Google Scholar 

  19. Casaroli Marano, R.P. & Vilaro, S. The role of fibronectin, laminin, vitronectin and their receptors on cellular adhesion in proliferative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci. 35, 2791–2903 (1994).

    CAS  PubMed  Google Scholar 

  20. Casaroli Marano, R.P., Preissner, K.T. & Vilaro, S., Fibronectin, laminin, vitronectin and their receptors at newly-formed capillaries in proliferative diabetic retinopathy. Exp. Eye Res. 60, 5–17 (1995).

    Article  CAS  Google Scholar 

  21. Brooks, P.C. et al. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164 (1994).

    Article  CAS  Google Scholar 

  22. Friedlander, M. et al. Definition of two angiogenic pathways by distinct αv integrins. Science 270, 1500–1502 (1995).

    Article  CAS  Google Scholar 

  23. Millauer, B., Shawver, L.K., Plate, K.H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367, 576–579 (1994).

    Article  CAS  Google Scholar 

  24. Smith, L.E.H. et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Invest. Ophthalmol. Vis. Sci. 35, 101–111 (1994).

    CAS  PubMed  Google Scholar 

  25. Aumailley, M. et al. Arg-Gly-Asp constrained within cyclic pentapeptides: Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett. 291, 50–54 (1991).

    Article  CAS  Google Scholar 

  26. Sasisekharan, R., Moses, M.A., Nugent, M.A., Cooney, C.L. & Langer, R. Heparinase inhibits neovascularization. Proc. Natl. Acad. Sci. USA 91, 1524–1528 (1994).

    Article  CAS  Google Scholar 

  27. Iruela-Arispe, M.L., Bornstein, P. & Sage, H. Thrombospondin exerts an anti-angiogenic effect on cord formation by endothelial cells in vitro. Proc. Natl. Acad. Sci. USA 88, 5026–5030 (1991).

    Article  CAS  Google Scholar 

  28. Dameron, K.M., Volpert, O.V., Tainsky, M.A. & Bouck, N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584 (1994).

    Article  CAS  Google Scholar 

  29. Moses, M.A., Sudhalter, J. & Langer, R. Identification of an inhibitor of neovascularization from cartilage. Science 248, 1408–1410 (1990).

    Article  CAS  Google Scholar 

  30. Johnson, M.D. et al. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J. Cell. Physiol. 160, 194–202 (1994).

    Article  CAS  Google Scholar 

  31. O'Reilly, M.S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    Article  CAS  Google Scholar 

  32. Aiello, L.P. et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480–1487 (1994).

    Article  CAS  Google Scholar 

  33. Jonczyk, A. et al. Zyklische Adhäsionsinhibitoren. EP 0 632 053 (1993).

  34. Preissner, K.T., Anders, E., Grulich-Henn, J. & Müller-Berghaus, G. Attachment of cultured human endothelial cells is promoted by specific association with S protein (vitronectin) as well as with the ternary S protein-thrombin-antithrombin III complex. Blood 71, 1581–1589 (1988).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammes, HP., Brownlee, M., Jonczyk, A. et al. Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor–type integrins inhibits retinal neovascularization. Nat Med 2, 529–533 (1996). https://doi.org/10.1038/nm0596-529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0596-529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing