Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

SUMO and the robustness of cancer

Key Points

  • Reversible post-translational protein modification by small ubiquitin-like modifier (SUMO), sumoylation, is a crucial mechanism in the maintenance of genomic integrity, in the regulation of proper gene expression patterns and in numerous signal transduction pathways and is thus essential for cell and tissue homeostasis in all eukaryotes.

  • Numerous protein complexes contain multiple sumoylated proteins, suggesting that sumoylation regulates not only the activity of individual substrates but that of entire functional complexes. Furthermore, in complex signalling pathways, sumoylation frequently targets multiple elements, in some cases antagonizing the activity of one element while promoting that of another within the same pathway.

  • Various biotic and abiotic stresses substantially alter the level of global cellular sumoylation. Importantly, numerous human tumours display marked upregulation of SUMO pathway components. This 'SUMOness' of cancers may indeed be required by tumour cells to maintain the robustness of compromised or otherwise easily misregulated gene expression programmes and signalling pathways. Sumoylation would therefore contribute substantially to cancer cell survival and proliferation in a potentially hostile microenvironment.

  • Although strong inhibition of global cellular sumoylation carries obvious risks for all cells, partial or temporary inhibition may be sufficient to expose certain tumour-specific vulnerabilities (for example, susceptibility to inducers of apoptosis and/or senescence) and therefore could provide a promising approach for future therapeutic intervention in some settings.

Abstract

Post-translational protein modification by small ubiquitin-like modifier (SUMO), termed sumoylation, is an important mechanism in cellular responses to stress and one that appears to be upregulated in many cancers. Here, we examine the role of sumoylation in tumorigenesis as a possibly necessary safeguard that protects the stability and functionality of otherwise easily misregulated gene expression programmes and signalling pathways of cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The SUMO pathway.
Figure 2: Regulatory potential of SUMO in NF-κB signalling.
Figure 3: Regulatory potential of sumoylation in TGFβ signalling.
Figure 4: Regulatory potential of sumoylation in hypoxia signalling.

Similar content being viewed by others

References

  1. Flotho, A. & Melchior, F. Sumoylation: a regulatory protein modification in health and disease. Annu. Rev. Biochem. 82, 357–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Beltrao, P., Bork, P., Krogan, N. J. & van Noort, V. Evolution and functional cross-talk of protein post-translational modifications. Mol. Syst. Biol. 9, 714 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Minguez, P. et al. Deciphering a global network of functionally associated post-translational modifications. Mol. Syst. Biol. 8, 599 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sternsdorf, T., Jensen, K. & Will, H. Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J. Cell Biol. 139, 1621–1634 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Müller, S., Matunis, M. J. & Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 17, 61–70 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Matunis, M. J., Coutavas, E. & Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107 (1997). References 6 and 7 are the first to show that SUMO is a ubiquitin-like protein modifier.

    Article  CAS  PubMed  Google Scholar 

  8. Zhong, S. et al. Role of SUMO-1-modified PML in nuclear body formation. Blood 95, 2748–2752 (2000).

    CAS  PubMed  Google Scholar 

  9. Tatham, M. H. et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat. Cell Biol. 10, 538–546 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Lallemand-Breitenbach, V. et al. Arsenic degrades PML or PML-RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell Biol. 10, 547–555 (2008). First demonstrated in yeast, references 9 and 10 report the function of the homologous mammalian StUbL RNF4 in the degradation of PML and PML–RARα.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu, J. et al. A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell 7, 143–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Stehmeier, P. & Müller, S. Regulation of p53 family members by the ubiquitin-like SUMO system. DNA Repair 8, 491–498 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Dünnebier, T. et al. Common variants in the UBC9 gene encoding the SUMO-conjugating enzyme are associated with breast tumor grade. Int. J. Cancer 125, 596–602 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Dünnebier, T. et al. Polymorphisms in the UBC9 and PIAS3 genes of the SUMO-conjugating system and breast cancer risk. Breast Cancer Res. Treat. 121, 185–194 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Synowiec, E. et al. Efficacy of DNA double-strand breaks repair in breast cancer is decreased in carriers of the variant allele of the UBC9 gene c.73G>A polymorphism. Mutat. Res. 694, 31–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Veltman, I. M. et al. Fusion of the SUMO/Sentrin-specific protease 1 gene SENP1 and the embryonic polarity-related mesoderm development gene MESDC2 in a patient with an infantile teratoma and a constitutional t(12;15)(q13;q25). Hum. Mol. Genet. 14, 1955–1963 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Tagawa, H. et al. Molecular cytogenetic analysis of the breakpoint region at 6q21-22 in T-cell lymphoma/leukemia cell lines. Genes Chromosomes Cancer 34, 175–185 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Yang, W. et al. Small ubiquitin-like modifier 1–3 conjugation is activated in human astrocytic brain tumors and is required for glioblastoma cell survival. Cancer Sci. 104, 70–77 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Bellail, A. C., Olson, J. J. & Hao, C. SUMO1 modification stabilizes CDK6 protein and drives the cell cycle and glioblastoma progression. Nat. Commun. 5, 4234 (2014).

    Article  PubMed  CAS  Google Scholar 

  21. Chen, S. F. et al. Ubc9 expression predicts chemoresistance in breast cancer. Chin. J. Cancer 30, 638–644 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Li, J. et al. Cbx4 governs HIF-1α to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell 25, 118–131 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Moschos, S. J. et al. SAGE and antibody array analysis of melanoma-infiltrated lymph nodes: identification of Ubc9 as an important molecule in advanced-stage melanomas. Oncogene 26, 4216–4225 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Shao, D. F. et al. High-level SAE2 promotes malignant phenotype and predicts outcome in gastric cancer. Am. J. Cancer Res. 5, 140–154 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Zhang, H., Kuai, X., Ji, Z., Li, Z. & Shi, R. Over-expression of small ubiquitin-related modifier-1 and sumoylated p53 in colon cancer. Cell Biochem. Biophys. 67, 1081–1087 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Xiang-Ming, Y. et al. SENP1 regulates cell migration and invasion in neuroblastoma. Biotechnol. Appl. Biochem. 63, 435–440 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Sun, Z. et al. Overexpression of SENP3 in oral squamous cell carcinoma and its association with differentiation. Oncol. Rep. 29, 1701–1706 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ding, X. et al. Overexpression of SENP5 in oral squamous cell carcinoma and its association with differentiation. Oncol. Rep. 20, 1041–1045 (2008).

    PubMed  Google Scholar 

  29. Jacques, C. et al. Two-step differential expression analysis reveals a new set of genes involved in thyroid oncocytic tumors. J. Clin. Endocrinol. Metab. 90, 2314–2320 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Brems-Eskildsen, A. S. et al. Prediction and diagnosis of bladder cancer recurrence based on urinary content of hTERT, SENP1, PPP1CA, and MCM5 transcripts. BMC Cancer 10, 646 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Han, Y. et al. SENP3-mediated de-conjugation of SUMO2/3 from promyelocytic leukemia is correlated with accelerated cell proliferation under mild oxidative stress. J. Biol. Chem. 285, 12906–12915 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bawa-Khalfe, T. & Yeh, E. T. SUMO losing balance: SUMO proteases disrupt SUMO homeostasis to facilitate cancer development and progression. Genes Cancer 1, 748–752 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bawa-Khalfe, T., Cheng, J., Wang, Z. & Yeh, E. T. Induction of the SUMO-specific protease 1 transcription by the androgen receptor in prostate cancer cells. J. Biol. Chem. 282, 37341–37349 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Moschos, S. J. et al. Expression analysis of Ubc9, the single small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, in normal and malignant tissues. Hum. Pathol. 41, 1286–1298 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Watts, F. Z. Starting and stopping SUMOylation. What regulates the regulator? Chromosoma 122, 451–463 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Amente, S., Lavadera, M. L., Palo, G. D. & Majello, B. SUMO-activating SAE1 transcription is positively regulated by Myc. Am. J. Cancer Res. 2, 330–334 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Hoellein, A. et al. Myc-induced SUMOylation is a therapeutic vulnerability for B-cell lymphoma. Blood 124, 2081–2090 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Comerford, K. M. et al. Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc. Natl Acad. Sci. USA 100, 986–991 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shao, R. et al. Increase of SUMO-1 expression in response to hypoxia: direct interaction with HIF-1α in adult mouse brain and heart in vivo. FEBS Lett. 569, 293–300 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Ying, S., Dünnebier, T., Si, J. & Hamann, U. Estrogen receptor alpha and nuclear factor Y coordinately regulate the transcription of the SUMO-conjugating gene UBC9 in MCF-7 breast cancer cells. PLoS ONE 8, e75695 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wu, F., Zhu, S., Ding, Y., Beck, W. T. & Mo, Y. Y. MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clin. Cancer Res. 15, 1550–1557 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zhao, Z. et al. microRNA-214-mediated UBC9 expression in glioma. BMB Rep. 45, 641–646 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sahin, U. et al. Interferon controls SUMO availability via the Lin28 and let-7 axis to impede virus replication. Nat. Commun. 5, 4187 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Licciardello, M. P. et al. NOTCH1 activation in breast cancer confers sensitivity to inhibition of SUMOylation. Oncogene 34, 3780–3790 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Tomasi, M. L. et al. S-Adenosyl methionine regulates ubiquitin-conjugating enzyme 9 protein expression and sumoylation in murine liver and human cancers. Hepatology 56, 982–993 (2012).

    Article  PubMed  CAS  Google Scholar 

  46. Su, Y. F., Yang, T., Huang, H., Liu, L. F. & Hwang, J. Phosphorylation of Ubc9 by Cdk1 enhances SUMOylation activity. PLoS ONE 7, e34250 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hsieh, Y. L. et al. Ubc9 acetylation modulates distinct SUMO target modification and hypoxia response. EMBO J. 32, 791–804 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Knipscheer, P. et al. Ubc9 sumoylation regulates SUMO target discrimination. Mol. Cell 31, 371–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Klug, H. et al. Ubc9 sumoylation controls SUMO chain formation and meiotic synapsis in Saccharomyces cerevisiae. Mol. Cell 50, 625–636 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Truong, K., Lee, T. D. & Chen, Y. Small ubiquitin-like modifier (SUMO) modification of E1 Cys domain inhibits E1 Cys domain enzymatic activity. J. Biol. Chem. 287, 15154–15163 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lee, M. H., Mabb, A. M., Gill, G. B., Yeh, E. T. & Miyamoto, S. NF-κB induction of the SUMO protease SENP2: a negative feedback loop to attenuate cell survival response to genotoxic stress. Mol. Cell 43, 180–191 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Pinto, M. P. et al. Heat shock induces a massive but differential inactivation of SUMO-specific proteases. Biochim. Biophys. Acta 1823, 1958–1966 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Guo, C. & Henley, J. M. Wrestling with stress: roles of protein SUMOylation and deSUMOylation in cell stress response. IUBMB Life 66, 71–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Golebiowski, F. et al. System-wide changes to SUMO modifications in response to heat shock. Sci. Signal. 2, ra24 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Saitoh, H. & Hinchey, J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252–6258 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Seifert, A., Schofield, P., Barton, G. J. & Hay, R. T. Proteotoxic stress reprograms the chromatin landscape of SUMO modification. Sci. Signal. 8, rs7 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Sydorskyy, Y. et al. A novel mechanism for SUMO system control: regulated Ulp1 nucleolar sequestration. Mol. Cell. Biol. 30, 4452–4462 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Guo, C. et al. SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO J. 32, 1514–1528 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bossis, G. & Melchior, F. Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21, 349–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, Y., Yang, J. & Yi, J. Redox sensing by proteins: oxidative modifications on cysteines and the consequent events. Antioxid. Redox Signal. 16, 649–657 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Davalos, A. R., Coppe, J. P., Campisi, J. & Desprez, P. Y. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 29, 273–283 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Laberge, R. M., Awad, P., Campisi, J. & Desprez, P. Y. Epithelial–mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron. 5, 39–44 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ohanna, M. et al. Senescent cells develop a PARP-1 and nuclear factor-κB-associated secretome (PNAS). Genes Dev. 25, 1245–1261 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Neyret-Kahn, H. et al. Sumoylation at chromatin governs coordinated repression of a transcriptional program essential for cell growth and proliferation. Genome Res. 23, 1563–1579 (2013). This study describes chromatin-associated sumoylation dynamics in cellular senescence.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Li, T. et al. Expression of SUMO-2/3 induced senescence through p53- and pRB-mediated pathways. J. Biol. Chem. 281, 36221–36227 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Bischof, O. et al. The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. Mol. Cell 22, 783–794 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Yates, K. E., Korbel, G. A., Shtutman, M., Roninson, I. B. & DiMaio, D. Repression of the SUMO-specific protease Senp1 induces p53-dependent premature senescence in normal human fibroblasts. Aging Cell 7, 609–621 (2008).

    Article  PubMed  CAS  Google Scholar 

  71. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Jackson, S. P. & Durocher, D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell 49, 795–807 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Dantuma, N. P. & van Attikum, H. Spatiotemporal regulation of posttranslational modifications in the DNA damage response. EMBO J. 35, 6–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Wan, J., Subramonian, D. & Zhang, X. D. SUMOylation in control of accurate chromosome segregation during mitosis. Curr. Protein Pept. Sci. 13, 467–481 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Rodriguez, A. & Pangas, S. A. Regulation of germ cell function by SUMOylation. Cell Tissue Res. 363, 47–55 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Cubenas-Potts, C. & Matunis, M. J. SUMO: a multifaceted modifier of chromatin structure and function. Dev. Cell 24, 1–12 (2013). An excellent review of SUMO function in all chromatin transactions.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Shayeghi, M., Doe, C. L., Tavassoli, M. & Watts, F. Z. Characterisation of Schizosaccharomyces pombe rad31, a UBA-related gene required for DNA damage tolerance. Nucleic Acids Res. 25, 1162–1169 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. al-Khodairy, F., Enoch, T., Hagan, I. M. & Carr, A. M. The Schizosaccharomyces pombe hus5 gene encodes a ubiquitin conjugating enzyme required for normal mitosis. J. Cell Sci. 108, 475–486 (1995).

    CAS  PubMed  Google Scholar 

  79. Galanty, Y. et al. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 462, 935–939 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Morris, J. R. et al. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462, 886–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Galanty, Y., Belotserkovskaya, R., Coates, J. & Jackson, S. P. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev. 26, 1179–1195 (2012). Using microscopy and in vivo laser microablation techniques, references 79–81 demonstrate the direct roles of sumoylation at DNA double-strand breaks through the recruitment of SUMO-targeted and SUMO-regulated ubiquitin ligases.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Bassi, C. et al. Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science 341, 395–399 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Xhemalce, B., Seeler, J. S., Thon, G., Dejean, A. & Arcangioli, B. Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance. EMBO J. 23, 3844–3853 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Soustelle, C. et al. A new Saccharomyces cerevisiae strain with a mutant Smt3-deconjugating Ulp1 protein is affected in DNA replication and requires Srs2 and homologous recombination for its viability. Mol. Cell. Biol. 24, 5130–5143 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Branzei, D. et al. Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127, 509–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Shima, H. et al. Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage. J. Cell Sci. 126, 5284–5292 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Ouyang, K. J., Yagle, M. K., Matunis, M. J. & Ellis, N. A. BLM SUMOylation regulates ssDNA accumulation at stalled replication forks. Front. Genet. 4, 167 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kessler, J. D. et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 335, 348–353 (2012). Provides evidence from a synthetic lethal screen in RAS-driven breast cancer cells of the concept of non-oncogene addiction pertaining to sumoylation.

    Article  CAS  PubMed  Google Scholar 

  89. Yu, B. et al. Oncogenesis driven by the Ras/Raf pathway requires the SUMO E2 ligase Ubc9. Proc. Natl Acad. Sci. USA 112, E1724–E1733 (2015). Shows that growth of RAS-driven colorectal cancer cells require sumoylation of chromatin regulators such as KAP1, thus providing further evidence for the role of sumoylation in non-oncogene addiction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Psakhye, I. & Jentsch, S. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151, 807–820 (2012). An elegant and thorough study demonstrating the importance of sumoylation in regulating the function of yeast double-strand DNA repair complex function.

    Article  CAS  PubMed  Google Scholar 

  91. Hendriks, I. A., Treffers, L. W., Verlaan-de Vries, M., Olsen, J. V. & Vertegaal, A. C. SUMO-2 orchestrates chromatin modifiers in response to DNA damage. Cell Rep. 10, 1778–1791 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 115, 565–576 (2003). Provides the first demonstration that NEMO sumoylation is instrumental in mediating DNA damage-induced NF-κB activation.

    Article  CAS  PubMed  Google Scholar 

  93. Li, F. & Sethi, G. Targeting transcription factor NF-κB to overcome chemoresistance and radioresistance in cancer therapy. Biochim. Biophys. Acta 1805, 167–180 (2010).

    CAS  PubMed  Google Scholar 

  94. Brach, M. A. et al. Ionizing radiation induces expression and binding activity of the nuclear factor κ B. J. Clin. Invest. 88, 691–695 (1991). First report demonstrating that genotoxic stress induces NF-κB activation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Mabb, A. M., Wuerzberger-Davis, S. M. & Miyamoto, S. PIASy mediates NEMO sumoylation and NF-κB activation in response to genotoxic stress. Nat. Cell Biol. 8, 986–993 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Yang, Y. et al. A cytosolic ATM/NEMO/RIP1 complex recruits TAK1 to mediate the NF-κB and p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein 2 responses to DNA damage. Mol. Cell. Biol. 31, 2774–2786 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Sabatel, H., Pirlot, C., Piette, J. & Habraken, Y. Importance of PIKKs in NF-κB activation by genotoxic stress. Biochem. Pharmacol. 82, 1371–1383 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. McCool, K. W. & Miyamoto, S. DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out. Immunol. Rev. 246, 311–326 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Liu, X., Chen, W., Wang, Q., Li, L. & Wang, C. Negative regulation of TLR inflammatory signaling by the SUMO-deconjugating enzyme SENP6. PLoS Pathog. 9, e1003480 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wuerzberger-Davis, S. M., Nakamura, Y., Seufzer, B. J. & Miyamoto, S. NF-κB activation by combinations of NEMO SUMOylation and ATM activation stresses in the absence of DNA damage. Oncogene 26, 641–651 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Guo, Z., Kozlov, S., Lavin, M. F., Person, M. D. & Paull, T. T. ATM activation by oxidative stress. Science 330, 517–521 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Stilmann, M. et al. A nuclear poly(ADP-ribose)-dependent signalosome confers DNA damage-induced IκB kinase activation. Mol. Cell 36, 365–378 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Piret, B. & Piette, J. Topoisomerase poisons activate the transcription factor NF-κB in ACH-2 and CEM cells. Nucleic Acids Res. 24, 4242–4248 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Renner, F., Moreno, R. & Schmitz, M. L. SUMOylation-dependent localization of IKKɛ in PML nuclear bodies is essential for protection against DNA-damage-triggered cell death. Mol. Cell 37, 503–515 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Longley, D. B. & Johnston, P. G. Molecular mechanisms of drug resistance. J. Pathol. 205, 275–292 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Bossis, G. et al. The ROS/SUMO axis contributes to the response of acute myeloid leukemia cells to chemotherapeutic drugs. Cell Rep. 7, 1815–1823 (2014). Provides evidence that low-ROS AML cells are chemoresistant because they fail to attenuate cellular sumoylation and that chemosensitivity in such cells can be restored by ROS or by inhibiting sumoylation.

    Article  CAS  PubMed  Google Scholar 

  107. Virchow, R. in Die Krankhaften Geschwülste Vol. 1 57–71 (Verlag von August Hirschwald, 1863) (in German).

  108. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Desterro, J. M., Rodriguez, M. S. & Hay, R. T. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell 2, 233–239 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Aillet, F. et al. Heterologous SUMO-2/3-ubiquitin chains optimize IκBα degradation and NF-κB activity. PLoS ONE 7, e51672 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Kracklauer, M. P. & Schmidt, C. At the crossroads of SUMO and NF-κB. Mol. Cancer 2, 39 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Liu, B. et al. Negative regulation of NF-κB signaling by PIAS1. Mol. Cell. Biol. 25, 1113–1123 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Tahk, S. et al. Control of specificity and magnitude of NF-κB and STAT1-mediated gene activation through PIASy and PIAS1 cooperation. Proc. Natl Acad. Sci. USA 104, 11643–11648 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu, Y., Bridges, R., Wortham, A. & Kulesz-Martin, M. NF-κB repression by PIAS3 mediated RelA SUMOylation. PLoS ONE 7, e37636 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Liu, B. et al. Proinflammatory stimuli induce IKKα-mediated phosphorylation of PIAS1 to restrict inflammation and immunity. Cell 129, 903–914 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Shuai, K. & Liu, B. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat. Rev. Immunol. 5, 593–605 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Decque, A. et al. Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing. Nat. Immunol. 17, 140–149 (2016). Demonstrates that in mouse immune cells, hyposumoylation induces a massive monomorphic inflammatory type I interferon response upon TLR engagement.

    Article  CAS  PubMed  Google Scholar 

  119. Gupta, G. P. & Massague, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Mani, S. A. et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Morrison, C. D., Parvani, J. G. & Schiemann, W. P. The relevance of the TGF-β paradox to EMT–MET programs. Cancer Lett. 341, 30–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Kang, J. S., Saunier, E. F., Akhurst, R. J. & Derynck, R. The type I TGF-β receptor is covalently modified and regulated by sumoylation. Nat. Cell Biol. 10, 654–664 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Imoto, S. et al. Regulation of transforming growth factor-β signaling by protein inhibitor of activated STAT, PIASy through Smad3. J. Biol. Chem. 278, 34253–34258 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Lin, X., Liang, M., Liang, Y. Y., Brunicardi, F. C. & Feng, X. H. SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J. Biol. Chem. 278, 31043–31048 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Chang, C. C., Lin, D. Y., Fang, H. I., Chen, R. H. & Shih, H. M. Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4. J. Biol. Chem. 280, 10164–10173 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Netherton, S. J. & Bonni, S. Suppression of TGFβ-induced epithelial–mesenchymal transition like phenotype by a PIAS1 regulated sumoylation pathway in NMuMG epithelial cells. PLoS ONE 5, e13971 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Long, J., Zuo, D. & Park, M. Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin. J. Biol. Chem. 280, 35477–35489 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Taylor, K. M. & Labonne, C. SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation. Dev. Cell 9, 593–603 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Lee, P. C. et al. SUMOylated SoxE factors recruit Grg4 and function as transcriptional repressors in the neural crest. J. Cell Biol. 198, 799–813 (2012). A nice illustration of the importance of sumoylation in attenuating synergy between two transcription factors, MITF and SOX9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Cronin, J. C. et al. Frequent mutations in the MITF pathway in melanoma. Pigment Cell Melanoma Res. 22, 435–444 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Bertolotto, C. et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480, 94–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Yokoyama, S. et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 480, 99–103 (2011). References 133 and 134 illustrate that loss of a sumoylation site in a transcription factor, MITF, represents a cancer predisposition in humans.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Cai, Q., Verma, S. C., Kumar, P., Ma, M. & Robertson, E. S. Hypoxia inactivates the VHL tumor suppressor through PIASy-mediated SUMO modification. PLoS ONE 5, e9720 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Sun, L. et al. PIASy mediates hypoxia-induced SIRT1 transcriptional repression and epithelial-to-mesenchymal transition in ovarian cancer cells. J. Cell Sci. 126, 3939–3947 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Carbia-Nagashima, A. et al. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1α during hypoxia. Cell 131, 309–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Xu, Y. et al. Induction of SENP1 in endothelial cells contributes to hypoxia-driven VEGF expression and angiogenesis. J. Biol. Chem. 285, 36682–36688 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Busca, R., Berra, E., Pouyssegur, J. & Ballotti, R. HIF1α est une nouvelle cible du facteur de transcription MITF Implication de la cascade AMPc-MITF-HIF1α dans le developpement des melanomes. Med. Sci. 22, 10–13 (2006) (in French).

    Google Scholar 

  139. Cai, Q. & Robertson, E. S. Ubiquitin/SUMO modification regulates VHL protein stability and nucleocytoplasmic localization. PLoS ONE 5, e12636 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Cheng, J., Kang, X., Zhang, S. & Yeh, E. T. SUMO-specific protease 1 is essential for stabilization of HIF1α during hypoxia. Cell 131, 584–595 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Huang, C. et al. SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation. EMBO J. 28, 2748–2762 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Hart, Y. & Alon, U. The utility of paradoxical components in biological circuits. Mol. Cell 49, 213–221 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Kitano, H. Biological robustness. Nat. Rev. Genet. 5, 826–837 (2004). An excellent review of the design principles that ensure the stability of complex biological systems.

    Article  CAS  PubMed  Google Scholar 

  144. Borkent, M. et al. A serial shRNA screen for roadblocks to reprogramming identifies the protein modifier SUMO2. Stem Cell Reports 6, 704–716 (2016). Reports that SUMO2, but, interestingly, not SUMO1, represents a strong barrier to the production of induced pluripotent stem cells from differentiated fibroblasts.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Fukuda, I. et al. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem. Biol. 16, 133–140 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Fukuda, I. et al. Kerriamycin B inhibits protein SUMOylation. J. Antibiot. 62, 221–224 (2009).

    Article  CAS  Google Scholar 

  148. Kim, Y. S., Nagy, K., Keyser, S. & Schneekloth, J. S. Jr. An electrophoretic mobility shift assay identifies a mechanistically unique inhibitor of protein sumoylation. Chem. Biol. 20, 604–613 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Hirohama, M. et al. Spectomycin B1 as a novel SUMOylation inhibitor that directly binds to SUMO E2. ACS Chem. Biol. 8, 2635–2642 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Kho, C. et al. Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure. Nat. Commun. 6, 7229 (2015).

    Article  PubMed  CAS  Google Scholar 

  151. Kumar, A. & Zhang, K. Y. Advances in the development of SUMO specific protease (SENP) inhibitors. Comput. Struct. Biotechnol. J. 13, 204–211 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Hendriks, I. A. & Vertegaal, A. C. A comprehensive compilation of SUMO proteomics. Nat. Rev. Mol. Cell Biol. 17, 581–595 (2016). An indispensable reference summarizing all available human SUMO substrates and their modification sites discovered by proteomic approaches.

    Article  CAS  PubMed  Google Scholar 

  153. Eifler, K. & Vertegaal, A. C. SUMOylation-mediated regulation of cell cycle progression and cancer. Trends Biochem. Sci. 40, 779–793 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Peuscher, M. H. & Jacobs, J. J. Posttranslational control of telomere maintenance and the telomere damage response. Cell Cycle 11, 1524–1534 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Verger, A., Perdomo, J. & Crossley, M. Modification with SUMO. EMBO Rep. 4, 137–142 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Gill, G. Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr. Opin. Genet. Dev. 13, 108–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Stielow, B. et al. Identification of SUMO-dependent chromatin-associated transcriptional repression components by a genome-wide RNAi screen. Mol. Cell 29, 742–754 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Stielow, B., Sapetschnig, A., Wink, C., Kruger, I. & Suske, G. SUMO-modified Sp3 represses transcription by provoking local heterochromatic gene silencing. EMBO Rep. 9, 899–906 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Paakinaho, V., Kaikkonen, S., Makkonen, H., Benes, V. & Palvimo, J. J. SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor. Nucleic Acids Res. 42, 1575–1592 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Liu, B., Tahk, S., Yee, K. M., Fan, G. & Shuai, K. The ligase PIAS1 restricts natural regulatory T cell differentiation by epigenetic repression. Science 330, 521–525 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Maison, C. et al. SUMOylation promotes de novo targeting of HP1α to pericentric heterochromatin. Nat. Genet. 43, 220–227 (2011). Shows a role for the sumoylation of HP1α in the de novo establishment of heterochromatin through an RNA binding mechanism.

    Article  CAS  PubMed  Google Scholar 

  162. Bawa-Khalfe, T. et al. Differential expression of SUMO-specific protease 7 variants regulates epithelial–mesenchymal transition. Proc. Natl Acad. Sci. USA 109, 17466–17471 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Poleshko, A. et al. Human factors and pathways essential for mediating epigenetic gene silencing. Epigenetics 9, 1280–1289 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ling, Y. et al. Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucleic Acids Res. 32, 598–610 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Gomez-del Arco, P., Koipally, J. & Georgopoulos, K. Ikaros SUMOylation: switching out of repression. Mol. Cell. Biol. 25, 2688–2697 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Kotaja, N., Karvonen, U., Janne, O. A. & Palvimo, J. J. The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1. J. Biol. Chem. 277, 30283–30288 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Liu, H. W. et al. Chromatin modification by SUMO-1 stimulates the promoters of translation machinery genes. Nucleic Acids Res. 40, 10172–10186 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Chang, P. C. et al. The chromatin modification by SUMO-2/3 but not SUMO-1 prevents the epigenetic activation of key immune-related genes during Kaposi's sarcoma associated herpesvirus reactivation. BMC Genomics 14, 824 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Cheng, C. Y. et al. An improved ChIP–seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example. BMC Genomics 15 (Suppl. 1), S1 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Niskanen, E. A. et al. Global SUMOylation on active chromatin is an acute heat stress response restricting transcription. Genome Biol. 16, 153 (2015). Illustrates the dynamics of SUMO2 and SUMO3 chromatin occupancy under heat stress.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Srikumar, T. et al. Global analysis of SUMO chain function reveals multiple roles in chromatin regulation. J. Cell Biol. 201, 145–163 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Mukherjee, S., Cruz-Rodriguez, O., Bolton, E. & Iniguez-Lluhi, J. A. The in vivo role of androgen receptor SUMOylation as revealed by androgen insensitivity syndrome and prostate cancer mutations targeting the proline/glycine residues of synergy control motifs. J. Biol. Chem. 287, 31195–31206 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Tempe, D. et al. SUMOylation of the inducible (c-Fos:c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation. Oncogene 33, 921–927 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Rosonina, E., Duncan, S. M. & Manley, J. L. SUMO functions in constitutive transcription and during activation of inducible genes in yeast. Genes Dev. 24, 1242–1252 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Hickey, C. M., Wilson, N. R. & Hochstrasser, M. Function and regulation of SUMO proteases. Nat. Rev. Mol. Cell Biol. 13, 755–766 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Ikeuchi, Y. et al. TIF1γ protein regulates epithelial–mesenchymal transition by operating as a small ubiquitin-like modifier (SUMO) E3 ligase for the transcriptional regulator SnoN1. J. Biol. Chem. 289, 25067–25078 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Fattet, L. et al. TIF1γ requires sumoylation to exert its repressive activity on TGFβ signaling. J. Cell Sci. 126, 3713–3723 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Agricola, E., Randall, R. A., Gaarenstroom, T., Dupont, S. & Hill, C. S. Recruitment of TIF1γ to chromatin via its PHD finger-bromodomain activates its ubiquitin ligase and transcriptional repressor activities. Mol. Cell 43, 85–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Lee, P. S., Chang, C., Liu, D. & Derynck, R. Sumoylation of Smad4, the common Smad mediator of transforming growth factor-β family signaling. J. Biol. Chem. 278, 27853–27863 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Semenza, G. L. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33, 207–214 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Carter, S., Bischof, O., Dejean, A. & Vousden, K. H. C-Terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat. Cell Biol. 9, 428–435 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Wu, S. Y. & Chiang, C. M. Crosstalk between sumoylation and acetylation regulates p53-dependent chromatin transcription and DNA binding. EMBO J. 28, 1246–1259 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Ledl, A., Schmidt, D. & Müller, S. Viral oncoproteins E1A and E7 and cellular LxCxE proteins repress SUMO modification of the retinoblastoma tumor suppressor. Oncogene 24, 3810–3818 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Huang, J. et al. SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nat. Commun. 3, 911 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. Gonzalez-Prieto, R., Cuijpers, S. A., Kumar, R., Hendriks, I. A. & Vertegaal, A. C. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. Cell Cycle 14, 1859–1872 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Ding, B., Sun, Y. & Huang, J. Overexpression of SKI oncoprotein leads to p53 degradation through regulation of MDM2 protein sumoylation. J. Biol. Chem. 287, 14621–14630 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Lee, M. H. et al. SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination. Nat. Cell Biol. 8, 1424–1431 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. Huang, H. J. et al. β-Catenin SUMOylation is involved in the dysregulated proliferation of myeloma cells. Am. J. Cancer Res. 5, 309–320 (2015).

    CAS  PubMed  Google Scholar 

  189. Kim, J. H. et al. Roles of sumoylation of a reptin chromatin-remodelling complex in cancer metastasis. Nat. Cell Biol. 8, 631–639 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. Wang, X. D. et al. SUMO-modified nuclear cyclin D1 bypasses Ras-induced senescence. Cell Death Differ. 18, 304–314 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. Tan, M. Y. et al. SUMO-specific protease 2 suppresses cell migration and invasion through inhibiting the expression of MMP13 in bladder cancer cells. Cell. Physiol. Biochem. 32, 542–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  192. Liu, B. et al. PIAS1 regulates breast tumorigenesis through selective epigenetic gene silencing. PLoS ONE 9, e89464 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Cashman, R., Cohen, H., Ben-Hamo, R., Zilberberg, A. & Efroni, S. SENP5 mediates breast cancer invasion via a TGFβRI SUMOylation cascade. Oncotarget 5, 1071–1082 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Coppola, D., Parikh, V., Boulware, D. & Blanck, G. Substantially reduced expression of PIAS1 is associated with colon cancer development. J. Cancer Res. Clin. Oncol. 135, 1287–1291 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Wei, J. et al. mRNA expression of BRCA1, PIAS1, and PIAS4 and survival after second-line docetaxel in advanced gastric cancer. J. Natl Cancer Inst. 103, 1552–1556 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Song, J. G. et al. SUMO-specific protease 6 promotes gastric cancer cell growth via deSUMOylation of FoxM1. Tumour Biol. 36, 9865–9871 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Ren, Y. H. et al. De-SUMOylation of FOXC2 by SENP3 promotes the epithelial–mesenchymal transition in gastric cancer cells. Oncotarget 5, 7093–7104 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  198. McDoniels-Silvers, A. L., Nimri, C. F., Stoner, G. D., Lubet, R. A. & You, M. Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas. Clin. Cancer Res. 8, 1127–1138 (2002).

    CAS  PubMed  Google Scholar 

  199. Inamura, K. et al. A metastatic signature in entire lung adenocarcinomas irrespective of morphological heterogeneity. Hum. Pathol. 38, 702–709 (2007).

    Article  PubMed  Google Scholar 

  200. Rabellino, A. et al. The SUMO E3-ligase PIAS1 regulates the tumor suppressor PML and its oncogenic counterpart PML-RARA. Cancer Res. 72, 2275–2284 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Liu, X. et al. Knockdown of SUMO-activating enzyme subunit 2 (SAE2) suppresses cancer malignancy and enhances chemotherapy sensitivity in small cell lung cancer. J. Hematol. Oncol. 8, 67 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Driscoll, J. J. et al. The sumoylation pathway is dysregulated in multiple myeloma and is associated with adverse patient outcome. Blood 115, 2827–2834 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Xu, J. et al. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling. Biochem. Biophys. Res. Commun. 460, 409–415 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. Chien, W. et al. PIAS4 is an activator of hypoxia signalling via VHL suppression during growth of pancreatic cancer cells. Br. J. Cancer 109, 1795–1804 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Ma, C. et al. SUMO-specific protease 1 regulates pancreatic cancer cell proliferation and invasion by targeting MMP-9. Tumour Biol. 35, 12729–12735 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. Li, P. et al. Heterogeneous expression and functions of androgen receptor co-factors in primary prostate cancer. Am. J. Pathol. 161, 1467–1474 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Hoefer, J. et al. PIAS1 is increased in human prostate cancer and enhances proliferation through inhibition of p21. Am. J. Pathol. 180, 2097–2107 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Li, T., Huang, S., Dong, M., Gui, Y. & Wu, D. Prognostic impact of SUMO-specific protease 1 (SENP1) in prostate cancer patients undergoing radical prostatectomy. Urol. Oncol. 31, 1539–1545 (2013).

    Article  CAS  PubMed  Google Scholar 

  209. Wang, L. & Banerjee, S. Differential PIAS3 expression in human malignancy. Oncol. Rep. 11, 1319–1324 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to the researchers whose contributions were not cited here owing to space constraints. The authors gratefully acknowledge the reviewers for their constructive criticisms and G. Fourel, J. Campbell, A. Krebs and the members of the Dejean Lab for valuable input. Work in the authors' laboratory is supported by grants from the European Research Council (ERC AdG-294341 'SUMOSTRESS'), the Institute National du Cancer (INCa), the Ligue Nationale Contre le Cancer (LNCC, Equipe Labellisée) and Odyssey-RE (to A.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob-Sebastian Seeler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

SUMO

Small protein belonging to the UBL (ubiquitin-like) family of proteins that are subject to enzyme-mediated covalent attachment to other proteins or chemical groups. Three functional paralogues exist in mammals, SUMO1, SUMO2 and SUMO3, of which the latter two (often called SUMO2/3) can form poly-SUMO chains in vivo.

Acute promyelocytic leukaemia

(APL). Leukaemia characterized by chromosomal translocations producing oncogenic fusion proteins of the retinoic acid receptor-α (RARα) and promyelocytic leukaemia protein (PML; most cases), PLZF, NPM or NUMA (rare cases); associated with a differentiation block producing immature granulocytes (promyelocytes).

PML nuclear bodies

Approximately one-micron-sized mammalian subnuclear structures containing sumoylated PML and SP100 as principal components, as well as numerous other, more transient proteins often implicated in regulating cellular stress responses such as genotoxic and oxidative stress.

SUMO-targeted ubiquitin ligase

(StUbL). A ubiquitin E3 ligase containing SUMO-interacting motifs that binds SUMO-modified proteins to promote their degradation by the ubiquitin–proteasome system.

SUMO E2 conjugating enzyme

The enzyme (usually called UBC9) that transfers SUMO to its substrate. In contrast to the ubiquitin E2, the SUMO E2 enzyme is unique in all organisms.

SUMO1/sentrin specific peptidase

(SENP). SUMO-specific cysteine protease capable of removing mature SUMO from its substrate (isopeptidase activity) and/or from its carboxy-terminal extension (maturation endopeptidase activity). Mammals possess six SENPs (SENP1, SENP2, SENP3, SENP5, SENP6 and SENP7), as well as the unrelated DESI1, DESI2 and USPL1 SUMO proteases.

SUMO E1 activating enzyme

In the SUMO system, the ATP-requiring, dimeric SAE1–SAE2 (also known as AOS1–UBA2) enzyme that makes the first high-energy thioester bond with mature SUMO that is necessary for the subsequent transfer steps.

SUMO E3 ligase

The protein that brings the SUMO-charged E2 enzyme and substrate together. The canonical E3 ligases in mammals are the PIAS proteins (PIAS1–4) and MMS21 (also known as NSE2).

Negatively charged amino acid-dependent sumoylation motif

A variant of the sumoylation consensus motif, ψKxE/D, (consisting of a bulky hydrophobic residue, ψ, the modified lysine, K, any amino acid, X, and an acidic residue, E or D) that contains additional negatively charged (for example, E or D) or phosphorylated (S, T or Y) residues further downstream.

SUMO-interacting motif

A short peptide motif facilitating non-covalent interactions (generally weak) with SUMO. SUMO-targeted ubiquitin ligases usually contain several such motifs resulting in stronger interactions with poly- or multi-sumoylated substrates.

Senescence-associated heterochromatin foci

Microscopically visible, dense nuclear structures with features of heterochromatin (for example, repressive histone marks) that are characteristic of some senescent cells.

ChIP–seq

Chromatin immunoprecipitation and next-generation sequencing; a method used to determine genome-wide binding patterns of chromatin-associated proteins using specific antibodies.

SUMO-regulated ubiquitin ligases

(SrUbLs). Directly sumoylated ubiquitin E3 ligases, such as RNF8, RNF168 or BRCA1, involved in DNA double-strand break repair.

Synthetic lethal interactions

Occur when inhibition or mutation of one or the other of two given factors is viable but simultaneous inhibition is lethal. Non-oncogene addiction is considered a specific example of this concept.

Pathogen-associated molecular patterns

(PAMPs). Pathogen-derived peptide, cell wall (for example, lipopolysaccharide) or nucleic acid fragments recognized by specific pattern recognition receptors (PRRs) that induce the innate immune response.

Toll-like receptor

(TLR). Member of a family of pattern recognition receptors that bind pathogen-associated molecular patterns.

Warburg effect

The metabolic shift, seen in many tumours, towards aerobic glycolysis that favours high anabolic rates and is compatible with, and inducible by, hypoxic conditions.

Modules

Systems theory concept describing organization of functional elements, for example, in physical structures or metabolic pathways; usually viewed as contributing to the robustness of the entire system.

Non-oncogene addiction

The concept that targeting certain stress tolerance or other non-oncogene pathways inhibits or kills cancer cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seeler, JS., Dejean, A. SUMO and the robustness of cancer. Nat Rev Cancer 17, 184–197 (2017). https://doi.org/10.1038/nrc.2016.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.143

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer