Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Aspirin and colorectal cancer: the promise of precision chemoprevention

Abstract

Aspirin (acetylsalicylic acid) has become one of the most commonly used drugs, given its role as an analgesic, antipyretic and agent for cardiovascular prophylaxis. Several decades of research have provided considerable evidence demonstrating its potential for the prevention of cancer, particularly colorectal cancer. Broader clinical recommendations for aspirin-based chemoprevention strategies have recently been established; however, given the known hazards of long-term aspirin use, larger-scale adoption of an aspirin chemoprevention strategy is likely to require improved identification of individuals for whom the protective benefits outweigh the harms. Such a precision medicine approach may emerge through further clarification of aspirin's mechanism of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of notable human studies in aspirin chemoprevention.
Figure 2: The hypothesized inter-related mechanisms of aspirin chemoprevention.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015).

    Article  PubMed  Google Scholar 

  2. Chan, A. T. et al. Aspirin in the chemoprevention of colorectal neoplasia: an overview. Cancer Prev. Res. (Phila.) 5, 164–178 (2012).

    Article  CAS  Google Scholar 

  3. Thorat, M. A. & Cuzick, J. Prophylactic use of aspirin: systematic review of harms and approaches to mitigation in the general population. Eur. J. Epidemiol. 30, 5–18 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. U.S. Preventive Services Task Force. Routine aspirin or nonsteroidal anti-inflammatory drugs for the primary prevention of colorectal cancer: U. S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 146, 361–364 (2007).

  5. U.S. Preventive Services Task Force. Draft Recommendation Statement: Aspirin to prevent cardiovascular disease and cancer U.S. Preventive Services Task Force [online] (2015).

  6. Chubak, J., Kamineni, A., Buist, D. S. M., Anderson, M. L. & Whitlock, E. P. Aspirin Use for the Prevention of Colorectal Cancer: An Updated Systematic Evidence Review for the U.S. Preventive Services Task Force (Agency for Healthcare Research and Quality (US), 2015).

    Google Scholar 

  7. Dehmer, S. P., Maciosek, M. V. & Flottemesch, T. J. Aspirin Use to Prevent Cardiovascular Disease and Colorectal Cancer: A Decision Analysis: Technical Report (Agency for Healthcare Research and Quality (US), 2015).

    Google Scholar 

  8. Cuzick, J. et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 10, 501–507 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Flossmann, E. et al. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet 369, 1603–1613 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Rothwell, P. M. et al. Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet 379, 1602–1612 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Thun, M. J., Jacobs, E. J. & Patrono, C. The role of aspirin in cancer prevention. Nat. Rev. Clin. Oncol. 9, 259–267 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Nan, H. et al. Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants. JAMA 313, 1133–1142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Friis, S., Riis, A. H., Erichsen, R., Baron, J. A. & Sorensen, H. T. Low-dose aspirin or nonsteroidal anti-inflammatory drug use and colorectal cancer risk: a population-based, case-control study. Ann. Intern. Med. 163, 347–355 (2015).

    Article  PubMed  Google Scholar 

  14. Rothwell, P. M. et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376, 1741–1750 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Sturmer, T. et al. Aspirin use and colorectal cancer: post-trial follow-up data from the Physicians' Health Study. Ann. Intern. Med. 128, 713–720 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Cook, N. R. et al. Low-dose aspirin in the primary prevention of cancer: the Women's Health Study: a randomized controlled trial. JAMA 294, 47–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Burn, J. et al. Effect of aspirin or resistant starch on colorectal neoplasia in the Lynch syndrome. N. Engl. J. Med. 359, 2567–2578 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Cook, N. R., Lee, I. M., Zhang, S. M., Moorthy, M. V. & Buring, J. E. Alternate-day, low-dose aspirin and cancer risk: long-term observational follow-up of a randomized trial. Ann. Intern. Med. 159, 77–85 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Burn, J. et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomized controlled trial. Lancet 378, 2081–2087 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cunningham, J. M. et al. The frequency of hereditary defective mismatch repair in a prospective series of unselected colorectal carcinomas. Am. J. Hum. Genet. 69, 780–790 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fearon, E. R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 6, 479–507 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Eide, T. J. Natural history of adenomas. World J. Surg. 15, 3–6 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Morson, B. C. The evolution of colorectal carcinoma. Clin. Radiol. 35, 425–431 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Neugut, A. I., Johnsen, C. M., Forde, K. A. & Treat, M. R. Recurrence rates for colorectal polyps. Cancer 55, 1586–1589 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Baron, J. A. et al. A randomized trial of aspirin to prevent colorectal adenomas. N. Engl. J. Med. 348, 891–899 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Sandler, R. S. et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N. Engl. J. Med. 348, 883–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Logan, R. F. et al. Aspirin and folic acid for the prevention of recurrent colorectal adenomas. Gastroenterology 134, 29–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Benamouzig, R. et al. Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the APACC trial. Gastroenterology 125, 328–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Ishikawa, H. et al. The preventive effects of low-dose enteric-coated aspirin tablets on the development of colorectal tumours in Asian patients: a randomised trial. Gut 63, 1755–1759 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Drew, D. A. et al. Colorectal polyp prevention by daily aspirin use is abrogated among active smokers. Cancer Causes Control 27, 93–103 (2015).

    Article  PubMed  Google Scholar 

  32. Pommergaard, H. C., Burcharth, J., Rosenberg, J. & Raskov, H. Aspirin, calcitriol, and calcium do not prevent adenoma recurrence in a randomized controlled trial. Gastroenterology 150, 114–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00501059 (2015).

  34. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00565708 (2015).

  35. ISRCTN Registry. Aspirin in reducing events in the elderly. ISRCTN.orghttp://dx.doi.org/10.1186/ISRCTN83772183 (2015).

  36. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02394769 (2015).

  37. ISRCTN Registry. Finding the best dose of aspirin to prevent Lynch Syndrome cancers. ISRCTN.orghttp://dx.doi.org/10.1186/ISRCTN16261285 (2015).

  38. ISRCTN Registry. The seAFOod (Systematic Evaluation of Aspirin and Fish Oil) polyp prevention trial. ISRCTN.orghttp://dx.doi.org/10.1186/ISRCTN05926847 (2015).

  39. Whitlock, E. P., Williams, S.B., Burda, B. U., Feightner, A. & Beil, T. Aspirin Use in Adults: Cancer, All-Cause Mortality, and Harms: A Systematic Evidence Review for the U. S. Preventive Services Task Force. (Agency for Healthcare Research and Quality (US), 2015).

    Google Scholar 

  40. Lanas, A., Wu, P., Medin, J. & Mills, E. J. Low doses of acetylsalicylic acid increase risk of gastrointestinal bleeding in a meta-analysis. Clin. Gastroenterol. Hepatol. 9, 762–768 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Serebruany, V. L. et al. Analysis of risk of bleeding complications after different doses of aspirin in 192,036 patients enrolled in 31 randomized controlled trials. Am. J. Cardiol. 95, 1218–1222 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Derry, S. & Loke, Y. K. Risk of gastrointestinal haemorrhage with long term use of aspirin: meta-analysis. BMJ 321, 1183–1187 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McQuaid, K. R. & Laine, L. Systematic review and meta-analysis of adverse events of low-dose aspirin and clopidogrel in randomized controlled trials. Am. J. Med. 119, 624–638 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. The Dutch TIA Trial Study Group. A comparison of two doses of aspirin (30 mg versus 283 mg a day) in patients after a transient ischemic attack or minor ischemic stroke. N. Engl. J. Med. 325, 1261–1266 (1991).

  45. Farrell, B., Godwin, J., Richards, S. & Warlow, C. The United Kingdom transient ischaemic attack (UK-TIA) aspirin trial: final results. J. Neurol. Neurosurg. Psychiatry 54, 1044–1054 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roderick, P. J., Wilkes, H. C. & Meade, T. W. The gastrointestinal toxicity of aspirin: an overview of randomised controlled trials. Br. J. Clin. Pharmacol. 35, 219–226 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weil, J. et al. Prophylactic aspirin and risk of peptic ulcer bleeding. BMJ 310, 827–830 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ulrich, C. M., Bigler, J. & Potter, J. D. Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat. Rev. Cancer 6, 130–140 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Barry, E. L. et al. CYP2C9 variants increase risk of colorectal adenoma recurrence and modify associations with smoking but not aspirin treatment. Cancer Causes Control 24, 47–54 (2013).

    Article  PubMed  Google Scholar 

  50. Chan, A. T., Hsu, M., Zauber, A. G., Hawk, E. T. & Bertagnolli, M. M. The influence of UGT1A6 variants and aspirin use in a randomized trial of celecoxib for prevention of colorectal adenoma. Cancer Prev. Res. (Phila.) 5, 61–72 (2012).

    Article  CAS  Google Scholar 

  51. Chan, A. T. et al. Cytochrome P450 2C9 variants influence response to celecoxib for prevention of colorectal adenoma. Gastroenterology 136, 2127–2136 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. McGreavey, L. E. et al. No evidence that polymorphisms in CYP2C8, CYP2C9, UGT1A6, PPARδ and PPARγ act as modifiers of the protective effect of regular NSAID use on the risk of colorectal carcinoma. Pharmacogenet. Genom. 15, 713–721 (2005).

    Article  CAS  Google Scholar 

  53. Roy, H. K. et al. Spectral biomarkers for chemoprevention of colonic neoplasia: a placebo-controlled double-blinded trial with aspirin. Gut http://dx.doi.org/10.1136/gutjnl-2015-309996 (2015).

  54. Thomas, S. S. et al. Tissue-specific patterns of gene expression in the epithelium and stroma of normal colon in healthy individuals in an aspirin intervention trial. BMC Med. Genet. 16, 18 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thompson, C. L. et al. No association between cyclooxygenase-2 and uridine diphosphate glucuronosyltransferase 1A6 genetic polymorphisms and colon cancer risk. World J. Gastroenterol. 15, 2240–2244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Angstadt, A. Y. et al. The effect of UGT1A and UGT2B polymorphisms on colorectal cancer risk: haplotype associations and gene-environment interactions. Genes Chromosomes Cancer 53, 454–466 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Scherer, D. et al. Genetic variation in UGT genes modify the associations of NSAIDs with risk of colorectal cancer: colon cancer family registry. Genes Chromosomes Cancer 53, 568–578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Garcia-Albeniz, X. & Chan, A. T. Aspirin for the prevention of colorectal cancer. Best Pract. Res. Clin. Gastroenterol. 25, 461–472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hull, M. A. Cyclooxygenase-2: how good is it as a target for cancer chemoprevention? Eur. J. Cancer 41, 1854–1863 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Patrignani, P. & Patrono, C. Cyclooxygenase inhibitors: from pharmacology to clinical read-outs. Biochim. Biophys. Acta 1851, 422–432 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Ranger, G. S. Current concepts in colorectal cancer prevention with cyclooxygenase inhibitors. Anticancer Res. 34, 6277–6282 (2014).

    CAS  PubMed  Google Scholar 

  62. Schror, K. Pharmacology and cellular/molecular mechanisms of action of aspirin and non-aspirin NSAIDs in colorectal cancer. Best Pract. Res. Clin. Gastroenterol. 25, 473–484 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, D. & Dubois, R. N. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29, 781–788 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Dixon, D. A., Blanco, F. F., Bruno, A. & Patrignani, P. Mechanistic aspects of COX-2 expression in colorectal neoplasia. Recent Results Cancer Res. 191, 7–37 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fink, S. P. et al. Aspirin and the risk of colorectal cancer in relation to the expression of 15-hydroxyprostaglandin dehydrogenase (HPGD). Sci. Transl Med. 6, 233re2 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chan, A. T., Ogino, S. & Fuchs, C. S. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N. Engl. J. Med. 356, 2131–2142 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Elzagheid, A. et al. High cyclooxygenase-2 expression is associated with advanced stages in colorectal cancer. Anticancer Res. 33, 3137–3143 (2013).

    PubMed  Google Scholar 

  68. Pugh, S. & Thomas, G. A. Patients with adenomatous polyps and carcinomas have increased colonic mucosal prostaglandin E2. Gut 35, 675–678 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chulada, P. C. et al. Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice. Cancer Res. 60, 4705–4708 (2000).

    CAS  PubMed  Google Scholar 

  70. Mutoh, M. et al. Involvement of prostaglandin E receptor subtype EP4 in colon carcinogenesis. Cancer Res. 62, 28–32 (2002).

    CAS  PubMed  Google Scholar 

  71. Oshima, M. et al. Suppression of intestinal polyposis in ApcΔ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Sonoshita, M. et al. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in ApcΔ716 knockout mice. Nat. Med. 7, 1048–1051 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Watanabe, K. et al. Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res. 59, 5093–5096 (1999).

    CAS  PubMed  Google Scholar 

  74. Nishihara, R. et al. Aspirin use and risk of colorectal cancer according to BRAF mutation status. JAMA 309, 2563–2571 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. I.Jspeert, J. E., Vermeulen, L., Meijer, G. A. & Dekker, E. Serrated neoplasia-role in colorectal carcinogenesis and clinical implications. Nat. Rev. Gastroenterol. Hepatol. 12, 401–409 (2015).

    Article  CAS  Google Scholar 

  76. Kedrin, D. & Gala, M. K. Genetics of the serrated pathway to colorectal cancer. Clin. Transl Gastroenterol. 6, e84 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bettington, M. et al. The serrated pathway to colorectal carcinoma: current concepts and challenges. Histopathology 62, 367–386 (2013).

    Article  PubMed  Google Scholar 

  78. Myung, S. J. et al. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc. Natl Acad. Sci. USA 103, 12098–12102 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yan, M. et al. 15-Hydroxyprostaglandin dehydrogenase inactivation as a mechanism of resistance to celecoxib chemoprevention of colon tumors. Proc. Natl Acad. Sci. USA 106, 9409–9413 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Guda, K. et al. Inactivating mutation in the prostaglandin transporter gene, SLCO2A1, associated with familial digital clubbing, colon neoplasia, and NSAID resistance. Cancer Prev. Res. (Phila.) 7, 805–812 (2014).

    Article  CAS  Google Scholar 

  81. Murphey, L. J. et al. Quantification of the major urinary metabolite of PGE2 by a liquid chromatographic/mass spectrometric assay: determination of cyclooxygenase-specific PGE2 synthesis in healthy humans and those with lung cancer. Anal. Biochem. 334, 266–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, D. & DuBois, R. N. Urinary PGE-M: a promising cancer biomarker. Cancer Prev. Res. (Phila.) 6, 507–510 (2013).

    Article  CAS  Google Scholar 

  83. Cai, Q. et al. Prospective study of urinary prostaglandin E2 metabolite and colorectal cancer risk. J. Clin. Oncol. 24, 5010–5016 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Shrubsole, M. J. et al. Urinary prostaglandin E2 metabolite and risk for colorectal adenoma. Cancer Prev. Res. (Phila.) 5, 336–342 (2012).

    Article  CAS  Google Scholar 

  85. Johnson, J. C. et al. Urine PGE-M: a metabolite of prostaglandin E2 as a potential biomarker of advanced colorectal neoplasia. Clin. Gastroenterol. Hepatol. 4, 1358–1365 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Bezawada, N. et al. Urinary PGE-M levels are associated with risk of colorectal adenomas and chemopreventive response to anti-inflammatory drugs. Cancer Prev. Res. (Phila.) 7, 758–765 (2014).

    Article  CAS  Google Scholar 

  87. Fedirko, V. et al. Urinary metabolites of prostanoids and risk of recurrent colorectal adenomas in the Aspirin/Folate Polyp Prevention Study (AFPPS). Cancer Prev. Res. (Phila.) 8, 1061–1068 (2015).

    Article  CAS  Google Scholar 

  88. Wang, D. & Dubois, R. N. Eicosanoids and cancer. Nat. Rev. Cancer 10, 181–193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bigler, J. et al. Polymorphisms predicted to alter function in prostaglandin E2 synthase and prostaglandin E2 receptors. Pharmacogenet. Genom. 17, 221–227 (2007).

    Article  CAS  Google Scholar 

  90. Liu, W., Poole, E. M., Ulrich, C. M. & Kulmacz, R. J. Decreased cyclooxygenase inhibition by aspirin in polymorphic variants of human prostaglandin H synthase-1. Pharmacogenet. Genom. 22, 525–537 (2012).

    Article  CAS  Google Scholar 

  91. Hubner, R. A. et al. Polymorphisms in PTGS1, PTGS2 and IL-10 do not influence colorectal adenoma recurrence in the context of a randomized aspirin intervention trial. Int. J. Cancer 121, 2001–2004 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Barry, E. L. et al. Cyclooxygenase-2 polymorphisms, aspirin treatment, and risk for colorectal adenoma recurrence—data from a randomized clinical trial. Cancer Epidemiol. Biomarkers Prev. 18, 2726–2733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Poole, E. M. et al. Genetic variation in prostaglandin E2 synthesis and signaling, prostaglandin dehydrogenase, and the risk of colorectal adenoma. Cancer Epidemiol. Biomarkers Prev. 19, 547–557 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Resler, A. J. et al. Genetic variation in prostaglandin synthesis and related pathways, NSAID use and colorectal cancer risk in the Colon Cancer Family Registry. Carcinogenesis 35, 2121–2126 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fresno Vara, J. A. et al. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 30, 193–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Liao, X. et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N. Engl. J. Med. 367, 1596–1606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Prage, E. B. et al. Location of inhibitor binding sites in the human inducible prostaglandin E synthase, MPGES1. Biochemistry 50, 7684–7693 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Morgenstern, R., Zhang, J. & Johansson, K. Microsomal glutathione transferase 1: mechanism and functional roles. Drug Metab. Rev. 43, 300–306 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Nakanishi, M., Gokhale, V., Meuillet, E. J. & Rosenberg, D. W. mPGES-1 as a target for cancer suppression: a comprehensive invited review “Phospholipase A2 and lipid mediators”. Biochimie 92, 660–664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kwon, Y. J. et al. Genome-wide analysis of DNA methylation and the gene expression change in lung cancer. J. Thorac. Oncol. 7, 20–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Aoyama, M. et al. LMO3 interacts with neuronal transcription factor, HEN2, and acts as an oncogene in neuroblastoma. Cancer Res. 65, 4587–4597 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. MacDonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bos, C. L. et al. Effect of aspirin on the Wnt/β-catenin pathway is mediated via protein phosphatase 2A. Oncogene 25, 6447–6456 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Gala, M. K. & Chan, A. T. Molecular pathways: aspirin and Wnt signaling—a molecularly targeted approach to cancer prevention and treatment. Clin. Cancer Res. 21, 1543–1548 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M. & Gutkind, J. S. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-β-catenin signaling axis. Science 310, 1504–1510 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Goessling, W. et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136, 1136–1147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. He, T. C., Chan, T. A., Vogelstein, B. & Kinzler, K. W. PPARδ is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99, 335–345 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gupta, R. A. et al. Prostacyclin-mediated activation of peroxisome proliferator-activated receptor delta in colorectal cancer. Proc. Natl Acad. Sci. USA 97, 13275–13280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gupta, R. A. et al. Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-δ accelerates intestinal adenoma growth. Nat. Med. 10, 245–247 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Wang, D. et al. Prostaglandin E2 promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor δ. Cancer Cell 6, 285–295 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Ouyang, N., Williams, J. L. & Rigas, B. NO-donating aspirin isomers downregulate peroxisome proliferator-activated receptor (PPAR)δ expression in APCmin/+ mice proportionally to their tumor inhibitory effect: implications for the role of PPARδ in carcinogenesis. Carcinogenesis 27, 232–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Tomlinson, I. et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat. Genet. 39, 984–988 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Zanke, B. W. et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat. Genet. 39, 989–994 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Pomerantz, M. M. et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat. Genet. 41, 882–884 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nan, H. et al. Aspirin use, 8q24 single nucleotide polymorphism rs6983267, and colorectal cancer according to CTNNB1 alterations. J. Natl Cancer Inst. 105, 1852–1861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Haiman, C. A. et al. A common genetic risk factor for colorectal and prostate cancer. Nat. Genet. 39, 954–956 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Montrose, D. C. et al. The role of PGE2 in intestinal inflammation and tumorigenesis. Prostaglandins Other Lipid Mediat. 116–117, 26–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Ma, X., Aoki, T., Tsuruyama, T. & Narumiya, S. Definition of prostaglandin E2–EP2 signals in the colon tumor microenvironment that amplify inflammation and tumor growth. Cancer Res. 75, 2822–2832 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Chan, A. T., Ogino, S., Giovannucci, E. L. & Fuchs, C. S. Inflammatory markers are associated with risk of colorectal cancer and chemopreventative response to anti-inflammatory drugs. Gastroenterology 140, 799–808 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Song, M. et al. A prospective study of plasma inflammatory markers and risk of colorectal cancer in men. Br. J. Cancer 108, 1891–1898 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Heikkila, K. et al. Associations of circulating C-reactive protein and interleukin-6 with cancer risk: findings from two prospective cohorts and a meta-analysis. Cancer Causes Control 20, 15–26 (2009).

    Article  PubMed  Google Scholar 

  122. Kakourou, A. et al. Interleukin-6 and risk of colorectal cancer: results from the CLUE II cohort and a meta-analysis of prospective studies. Cancer Causes Control 26, 1449–1460 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Wang, X., Baek, S. J. & Eling, T. E. The diverse roles of nonsteroidal anti-inflammatory drug activated gene (NAG-1/GDF15) in cancer. Biochem. Pharmacol. 85, 597–606 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Breit, S. N. et al. The TGF-β superfamily cytokine, MIC-1/GDF15: a pleotrophic cytokine with roles in inflammation, cancer and metabolism. Growth Factors 29, 187–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Mehta, R. S. et al. A prospective study of macrophage inhibitory cytokine-1 (MIC-1/GDF15) and risk of colorectal cancer. J. Natl Cancer Inst. 106, dju016 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Smyth, E., Grosser, T. & FitzGerald, G. Goodman & Gillman's The Pharmacological Basis of Therapeutics (McGraw-Hill, 2011).

    Google Scholar 

  127. Dixon, D. A. et al. Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling. J. Clin. Invest. 116, 2727–2738 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chan, A. T., Ogino, S. & Fuchs, C. S. Aspirin use and survival after diagnosis of colorectal cancer. JAMA 302, 649–658 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Din, F. V. et al. Effect of aspirin and NSAIDs on risk and survival from colorectal cancer. Gut 59, 1670–1679 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Goh, C. H. et al. Post-operative aspirin use and colorectal cancer-specific survival in patients with stage I–III colorectal cancer. Anticancer Res. 34, 7407–7414 (2014).

    PubMed  Google Scholar 

  131. Li, P. et al. Aspirin use after diagnosis but not prediagnosis improves established colorectal cancer survival: a meta-analysis. Gut 64, 1419–1425 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Ng, K. et al. Aspirin and COX-2 inhibitor use in patients with stage III colon cancer. J. Natl Cancer Inst. 107, 345 (2015).

    PubMed  Google Scholar 

  133. Thun, M. J., Namboodiri, M. M. & Heath, C. W. Jr. Aspirin use and reduced risk of fatal colon cancer. N. Engl. J. Med. 325, 1593–1596 (1991).

    Article  CAS  PubMed  Google Scholar 

  134. Algra, A. M. & Rothwell, P. M. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 13, 518–527 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Rothwell, P. M. et al. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 379, 1591–1601 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Tougeron, D., Sha, D., Manthravadi, S. & Sinicrope, F. A. Aspirin and colorectal cancer: back to the future. Clin. Cancer Res. 20, 1087–1094 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Domingo, E. et al. Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer. J. Clin. Oncol. 31, 4297–4305 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Reimers, M. S. et al. Expression of HLA class I antigen, aspirin use, and survival after a diagnosis of colon cancer. JAMA Intern. Med. 174, 732–739 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Kothari, N. et al. Impact of regular aspirin use on overall and cancer-specific survival in patients with colorectal cancer harboring a PIK3CA mutation. Acta Oncol. 54, 487–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Ye, X. F., Wang, J., Shi, W. T. & He, J. Relationship between aspirin use after diagnosis of colorectal cancer and patient survival: a meta-analysis of observational studies. Br. J. Cancer 111, 2172–2179 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. ISRCTN Registry. ADD-ASPIRIN: the effects of aspirin on disease recurrence and survival after primary therapy in common non-metastatic solid tumours. ISRCTN.orghttp://dx.doi.org/10.1186/ISRCTN74358648 (2015).

  142. Roy, H. K. et al. Association between rectal optical signatures and colonic neoplasia: potential applications for screening. Cancer Res. 69, 4476–4483 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Radosevich, A. J. et al. Rectal optical markers for in vivo risk stratification of premalignant colorectal lesions. Clin. Cancer Res. 21, 4347–4355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liesenfeld, D. B. et al. Aspirin reduces plasma concentrations of the oncometabolite 2-hydroxyglutarate: results of a randomized, double-blind, crossover trial. Cancer Epidemiol. Biomarkers Prev. 25, 180–187 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gerner, E. W. & Meyskens, F. L. Jr. Combination chemoprevention for colon cancer targeting polyamine synthesis and inflammation. Clin. Cancer Res. 15, 758–761 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Casero, R. A. Jr & Marton, L. J. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat. Rev. Drug Discov. 6, 373–390 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Gerner, E. W. & Meyskens, F. L. Jr. Polyamines and cancer: old molecules, new understanding. Nat. Rev. Cancer 4, 781–792 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00983580 (2015).

  149. Meyskens, F. L. Jr et al. Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: a randomized placebo-controlled, double-blind trial. Cancer Prev. Res. (Phila.) 1, 32–38 (2008).

    Article  CAS  Google Scholar 

  150. Martinez, M. E. et al. Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene. Proc. Natl Acad. Sci. USA 100, 7859–7864 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Barry, E. L. et al. Ornithine decarboxylase polymorphism modification of response to aspirin treatment for colorectal adenoma prevention. J. Natl Cancer Inst. 98, 1494–1500 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Hubner, R. A. et al. Ornithine decarboxylase G316A genotype is prognostic for colorectal adenoma recurrence and predicts efficacy of aspirin chemoprevention. Clin. Cancer Res. 14, 2303–2309 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Zell, J. A. et al. Ornithine decarboxylase-1 polymorphism, chemoprevention with eflornithine and sulindac, and outcomes among colorectal adenoma patients. J. Natl Cancer Inst. 102, 1513–1516 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Barry, E. L., Mott, L. A., Sandler, R. S., Ahnen, D. J. & Baron, J. A. Variants downstream of the ornithine decarboxylase gene influence risk of colorectal adenoma and aspirin chemoprevention. Cancer Prev. Res. (Phila.) 4, 2072–2082 (2011).

    Article  CAS  Google Scholar 

  155. Wender, R. C. Aspirin and NSAID chemoprevention, gene-environment interactions, and risk of colorectal cancer. JAMA 313, 1111–1112 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Hull, M. A. et al. A randomized controlled trial of eicosapentaenoic acid and/or aspirin for colorectal adenoma prevention during colonoscopic surveillance in the NHS Bowel Cancer Screening Programme (The seAFOod Polyp Prevention Trial): study protocol for a randomized controlled trial. Trials 14, 237 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Baron, J. A. et al. Gastrointestinal adverse effects of short-term aspirin use: a meta-analysis of published randomized controlled trials. Drugs R D 13, 9–16 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Abraham, N. S. et al. ACCF/ACG/AHA 2010 expert consensus document on the concomitant use of proton pump inhibitors and thienopyridines: a focused update of the ACCF/ACG/AHA 2008 expert consensus document on reducing the gastrointestinal risks of antiplatelet therapy and NSAID use. Am. J. Gastroenterol. 105, 2533–2549 (2010).

    Article  PubMed  Google Scholar 

  159. Fuster, V. & Sweeny, J. M. Aspirin: a historical and contemporary therapeutic overview. Circulation 123, 768–778 (2011).

    Article  PubMed  Google Scholar 

  160. Vane, J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol. 231, 232–235 (1971).

    Article  CAS  PubMed  Google Scholar 

  161. Kune, G. A., Kune, S. & Watson, L. F. Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne Colorectal Cancer Study. Cancer Res. 48, 4399–4404 (1988).

    CAS  PubMed  Google Scholar 

  162. Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).

    Article  CAS  PubMed  Google Scholar 

  163. Giovannucci, E. et al. Aspirin use and the risk for colorectal cancer and adenoma in male health professionals. Ann. Intern. Med. 121, 241–246 (1994).

    Article  CAS  PubMed  Google Scholar 

  164. Giovannucci, E. et al. Aspirin and the risk of colorectal cancer in women. N. Engl. J. Med. 333, 609–614 (1995).

    Article  CAS  PubMed  Google Scholar 

  165. Cole, B. F. et al. Aspirin for the chemoprevention of colorectal adenomas: meta-analysis of the randomized trials. J. Natl Cancer Inst. 101, 256–266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew T. Chan.

Ethics declarations

Competing interests

A.T.C. has previously served as a consultant for Bayer Healthcare, Millennium Pharmaceuticals, Pfizer Inc. and Pozen Inc. This study was not funded by Bayer Healthcare, Millennium Pharmaceuticals, Pfizer Inc. or Pozen Inc. D.A.D. and Y.C. declare no competing interests.

Related links

PowerPoint slides

Glossary

Case–control studies

A type of observational study design in which two groups differ according to outcome (for example, in which those with the disease or condition (cases) are compared with disease-free individuals (controls)). These studies can be nested within a larger cohort with only a subset of the larger control population being used.

Confidence interval

(CI). A measure of the uncertainty associated with a sample estimate for a given parameter.

Events per 1,000 person-years

Also known as the incidence density rate or person–time incidence rate. This approach normalizes event observations to the amount of observation time and is useful if observation times are not constant across a sample population or the risk of an event varies over time.

Fractal dimension

(FRAC). A spectroscopic measure of light scattering due to nanoscale architectural changes in mass density of cellular components that has been associated with early neoplastic changes in epithelial cells.

Glucuronidation

The addition of glucuronic acid to a substrate.

H2 blocker

A drug that inhibits the production of gastric acid by targeting histamine H2 receptors of gastric parietal cells.

Hazard ratio

(HR). A measure of the ratio of the hazard rates (the rate at which an event occurs) for a given outcome (for example, cancer) described by an explanatory variable (for example, aspirin versus placebo).

Incidence rate ratio

(IRR). A measure of the ratio between the rates of how often an outcome (for example, cancer) occurs in a population at any given time according to an explanatory variable (for example, aspirin versus placebo).

Odds ratio

(OR). A measure of association representing the odds (the probability of disease divided by 1 minus the probability) of an outcome according to an explanatory variable (for example, aspirin users versus non-users).

P heterogeneity

A statistic that measures the significance of the difference (or heterogeneity) between two effect sizes.

P interaction

A statistic that measures the significance of the effect of a given exposure or explanatory variable on a second exposure or explanatory variable, and vice versa.

Proton pump inhibitor

A drug that inhibits the production of gastric acid by targeting the proton pump transport activity of gastric parietal cells. Proton pump inhibitors are generally more effective than H2 blockers.

P trend

A statistic that measures the significance of a correlation of effect size, either positive or negative, across a continuous or ordinal variable.

Relative risk

(RR). The probability of an outcome (for example, cancer) occurring in one group (for example, aspirin) versus the probability in a comparison group (for example, placebo).

Serrated carcinogenesis pathway

A carcinogenesis pathway in which colorectal tumours are characterized by epigenetic dysregulation (promoter hypermethylation), BRAF mutation and activation, and often microsatellite instability, rather than adenomatous polyposis coli (APC) mutations and chromosomal instability.

Single nucleotide polymorphism

(SNP). A common type of genetic variation in which a single nucleotide or base occurs at a specific position in the genome that is different from the expected or reference nucleotide.

Spectral slope

(SPEC). A spectroscopic measure of light scattering due to nanoscale architectural changes in the size distribution of cellular components that has been associated with early neoplastic changes in epithelial cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drew, D., Cao, Y. & Chan, A. Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat Rev Cancer 16, 173–186 (2016). https://doi.org/10.1038/nrc.2016.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer