Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The significance of unstable chromosomes in colorectal cancer

Abstract

A very large fraction of cancers have an abnormal genetic content, called aneuploidy, which is characterized by changes in chromosome structure and number. One explanation for this aneuploidy is chromosomal instability, in which cancer cells gain or lose whole chromosomes or large fractions of chromosomes at a greatly increased rate compared with normal cells. Here, we explore experimental and theoretical evidence for the initiation of chromosomal instability in very early colorectal cancers, and reflect on the role that chromosomal instability could have in colorectal tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A step-wise model of colorectal tumorigenesis.
Figure 2: The timing of CIN.

Similar content being viewed by others

References

  1. Bach, S. P., Renehan, A. G. & Potten, C. S. Stem cells: the intestinal stem cell as a paradigm. Carcinogenesis 21, 469–476 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Loeb, L. A., Springgate, C. F. & Battula, N. Errors in DNA replication as a basis of malignant changes. Cancer Res. 34, 2311–2321 (1974).

    CAS  PubMed  Google Scholar 

  3. Morin, P. J. et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Sparks, A. B., Morin, P. J., Vogelstein, B. & Kinzler, K. W. Mutational analysis of the APC /b-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58, 1130–1134 (1998).

    CAS  PubMed  Google Scholar 

  5. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colon cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  7. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Luebeck, E. G. & Moolgavkar, S. H. Multistage carcinogenesis and the incidence of colorectal cancer. Proc. Natl Acad. Sci. USA 99, 15095–15100 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and Darwinian selection in tumours. Trends Cell Biol. 9, M57–M60 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Klein, C. A. et al. Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360, 683–9 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Thiagalingam, S. et al. Mechanisms underlying losses of heterozygosity in human colorectal cancers. Proc. Natl Acad. Sci. USA 98, 2698–2702 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kern, S. E. et al. Clinical and pathological associations with allelic loss in colorectal carcinoma. JAMA 261, 3099–3103 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Heim, S. & Mitelman, F. in Cancer Cytogenetics 369–388 (Wiley-Liss, New York, 1995).

    Google Scholar 

  16. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Ohshima, K. et al. Mutation analysis of mitotic checkpoint genes (hBUB1 and hBUBR1) and microsatellite instability in adult T-cell leukemia/lymphoma. Cancer Lett. 158, 141–150. (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Jin, D. Y., Spencer, F. & Jeang, K. T. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93, 81–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Michel, L. S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409, 355–359 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Jallepalli, P. V. & Lengauer, C. Chromosome segregation and cancer: cutting through the mystery. Nature Rev. Cancer 1, 109–117 (2001).

    Article  CAS  Google Scholar 

  22. Kolodner, R. D., Putnam, C. D. & Myung, K. Maintenance of genome stability in Saccharomyces cerevisiae. Science 297, 552–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Duesberg, P. & Li, R. Multistep carcinogenesis: a chain reaction of aneuploidizations. Cell Cycle 2, 202–210 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Duesberg, P., Stindl, R. & Hehlmann, R. Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy. Proc. Natl Acad. Sci. USA 97, 14295–14300 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev. Cancer 2, 815–825 (2002).

    Article  CAS  Google Scholar 

  26. Doxsey, S. The centrosome — a tiny organelle with big potential. Nature Genet. 20, 104–106 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Spencer, F., Gerring, S. L., Connelly, C. & Hieter, P. Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae. Genetics 124, 237–249 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Knudson, A. G. Two genetic hits (more or less) to cancer. Nature Rev. Cancer 1, 157–162 (2001).

    Article  CAS  Google Scholar 

  29. Brat, D. J. et al. The structural basis of molecular genetic deletions. An integration of classical cytogenetic and molecular analyses in pancreatic adenocarcinoma. Am. J. Pathol. 150, 383–391 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cavenee, W. K. et al. Genetic origin of mutations predisposing to retinoblastoma. Science 228, 501–503 (1985).

    Article  CAS  PubMed  Google Scholar 

  31. Shih, I. M. et al. Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res. 61, 818–822 (2001).

    CAS  PubMed  Google Scholar 

  32. Huang, J. et al. APC mutations in colorectal tumors with mismatch repair deficiency. Proc. Natl Acad. Sci. USA 93, 9049–9054 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fodde, R. et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biol. 3, 433–438. (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Kaplan, K. B. et al. A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nature Cell Biol. 3, 429–432 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Haigis, K. M., Caya, J. G., Reichelderfer, M. & Dove, W. F. Intestinal adenomas can develop with a stable karyotype and stable microsatellites. Proc. Natl Acad. Sci. USA 99, 8927–8931 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sieber, O. M. et al. Analysis of chromosomal instability in human colorectal adenomas with two mutational hits at APC. Proc. Natl Acad. Sci. USA 99, 16910–16915 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shibata, D., Schaeffer, J., Li, Z. H., Capella, G. & Perucho, M. Genetic heterogeneity of the c-K-ras locus in colorectal adenomas but not in adenocarcinomas. J. Natl Cancer Inst. 85, 1058–1063 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Aaltonen, L. A. et al. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 54, 1645–1648 (1994).

    CAS  PubMed  Google Scholar 

  39. Brueckl, W. M. et al. Microsatellite instability in colorectal adenomas: relevance and clinical importance. Int. J. Colorectal Dis. 15, 189–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Bomme, L. et al. Cytogenetic analysis of colorectal adenomas: karyotypic comparisons of synchronous tumors. Cancer Genet. Cytogenet. 106, 66–71 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Tsao, J. L. et al. Bladder cancer genotype stability during clinical progression. Genes Chromosom. Cancer 29, 26–32 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. van Tilborg, A. A. et al. Molecular evolution of multiple recurrent cancers of the bladder. Hum. Mol. Genet. 9, 2973–2980 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Umayahara, K. et al. Comparative genomic hybridization detects genetic alterations during early stages of cervical cancer progression. Genes Chromosom. Cancer 33, 98–102 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Hermsen, M. et al. Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. Gastroenterology 123, 1109–1119 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Bockmuhl, U. & Petersen, I. DNA ploidy and chromosomal alterations in head and neck squamous cell carcinoma. Virchows Arch. 441, 541–550 (2002).

    Article  PubMed  Google Scholar 

  46. Pihan, G. A., Wallace, J., Zhou, Y. & Doxsey, S. J. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res. 63, 1398–1404 (2003).

    CAS  PubMed  Google Scholar 

  47. Moskovitz, A. H. et al. Chromosomal instability in pancreatic ductal cells from patients with chronic pancreatitis and pancreatic adenocarcinoma. Genes Chromosom. Cancer 37, 201–206 (2003).

    Article  PubMed  Google Scholar 

  48. Nowak, M. A. et al. The role of chromosomal instability in tumor initiation. Proc. Natl Acad. Sci. USA 99, 16226–16231 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moolgavkar, S. H. & Knudson, A. G. Jr. Mutation and cancer: a model for human carcinogenesis. J. Natl Cancer Inst. 66, 1037–1052 (1981).

    Article  CAS  PubMed  Google Scholar 

  50. Michor, F., Iwasa, Y., Komarova, N. L. & Nowak, M. A. Local regulation of homeostasis favors chromosomal instability. Curr. Biol. 13, 581–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Komarova, N. L., Sengupta, A. & Nowak, M. A. Mutation-selection networks of cancer initiation: tumor suppressor genes and chromosomal instability. J. Theor. Biol. 223, 433–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Weber, B. L. & Couch, F. J. Breast Cancer. In The Genetic Basis of Human Cancer (eds Vogelstein, B. & Kinzler, K. W.) 537–563 (MacGraw-Hill, New York, 1998).

    Google Scholar 

  53. Marra, G. & Boland, C. R. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J. Natl Cancer Inst. 87, 1114–1125 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Peltomaki, P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum. Mol. Genet. 10, 735–740 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Yamamoto, H., Imai, K. & Perucho, M. Gastrointestinal cancer of the microsatellite mutator phenotype pathway. J. Gastroenterol. 37, 153–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Boyer, J. C. et al. Microsatellite instability, mismatch repair deficiency, and genetic defects in human cancer cell lines. Cancer Res. 55, 6063–6070.

  57. Speicher, M. R., Gwyn Ballard, S. & Ward, D. C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genet. 12, 368–375 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Ried, T. et al. Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer 15, 234–245 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, T. L. et al. Digital karyotyping. Proc. Natl Acad. Sci. USA 99, 16156–16161 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Lengauer.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

colorectal cancer

pancreatic cancers

prostate cancer

LocusLink

APC

β-catenin

BRAF

BUB1

KRAS

MAD2

p53

TGF-β

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopalan, H., Nowak, M., Vogelstein, B. et al. The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 3, 695–701 (2003). https://doi.org/10.1038/nrc1165

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing