Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein kinase C and other diacylglycerol effectors in cancer

Key Points

  • Protein kinase C (PKC) is a family of serine/threonine kinases that regulates a diverse set of cellular processes including proliferation, apoptosis, cell survival and migration, and there is a substantial amount of evidence linking PKC to tumorigenesis. Studying PKC regulation of these processes and how misregulation might contribute to tumorigenesis is complicated by the fact that each individual PKC isozyme has a distinct role in these processes in a cell-type-dependent manner.

  • There is a limited number of instances in which mutation of PKCs in humans is linked to a cancer phenotype; however, altered levels of PKC isoforms can be found in many types of human cancers. In many cases, altered expression of PKC can also be linked to disease progression.

  • PKCs were originally thought to be pro-mitogenic kinases, but this effect seems to be PKC-isozyme-dependent and cell-type-dependent, as many PKCs can also inhibit cell-cycle progression. Several PKCs have been shown to be anti-proliferative in various cell types, generally through upregulation of cell-cycle inhibitors.

  • PKCε promotes cell survival in many cell types through increased activation of the Akt pathway and upregulation of pro-survival factors. Furthermore, PKCε overexpression has been linked to chemotherapeutic resistance in various cell types.

  • PKCδ is generally considered a growth inhibitory or pro-apoptotic PKC, and many types of apoptotic stimuli can induce PKCδ translocation to mitochondria, leading to cytochrome c release, caspase-3 cleavage and generation of a constitutively active PKCδ catalytic fragment that is important for phosphorylation of nuclear PKC substrates. Activation of PKCδ can also trigger the autocrine secretion of death factors and kill cells through the activation of the extrinsic apoptotic pathway.

  • Several PKCs have been implicated in invasion and metastasis of cancer cells; however, knowledge of the molecular mechanisms through which PKC might contribute to these processes is still vague.

  • Emerging evidence indicates that PKC, specifically PKCβII, might be an important mediator of vascular endothelial growth factor (VEGF)-induced angiogenesis and have a role in VEGF-induced endothelial-cell proliferation.

  • Several other classes of proteins can be activated by phorbol esters or DAG, including protein kinase D, Ras guanyl nucleotide-releasing proteins, chimaerins, diacylglycerol kinases and Munc13s. Several of these proteins have also been implicated in cancer progression.

Abstract

Almost three decades after the discovery of protein kinase C (PKC), we still have only a partial understanding of how this family of serine/threonine kinases is involved in tumour promotion. PKC isozymes — effectors of diacylglycerol (DAG) and the main targets of phorbol-ester tumour promoters — have important roles in cell-cycle regulation, cellular survival, malignant transformation and apoptosis. How do PKC isozymes regulate these diverse cellular processes and what are their contributions to carcinogenesis? Moreover, what is the contribution of all phorbol-ester effectors, which include PKCs and small G-protein regulators? We now face the challenge of dissecting the relative contribution of each DAG signal to cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of diacylglycerol (DAG) receptors relevant to cancer.
Figure 2: Opposing roles of PKCδ and PKCε.
Figure 3: Mechanisms of PKCδ-mediated apoptosis.
Figure 4: Regulation of small GTPases by phorbol-ester/DAG receptors.

Similar content being viewed by others

References

  1. Castagna, M. et al. Direct activation of calcium-activated, phospholipid-dependent protein-kinase by tumor-promoting phorbol esters. J. Biol. Chem. 257, 7847–7851 (1982).

    CAS  PubMed  Google Scholar 

  2. Kikkawa, U., Takai, Y., Tanaka, Y., Miyake, R. & Nishizuka, Y. Protein kinase-C as a possible receptor protein of tumor-promoting phorbol esters. J. Biol. Chem. 258, 1442–1445 (1983).

    Google Scholar 

  3. Leach, K. L., James, M. L. & Blumberg, P. M. Characterization of a specific phorbol ester aporeceptor in mouse-brain cytosol. Proc. Natl Acad. Sci. USA 80, 4208–4212 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U. & Nishizuka, Y. Activation of calcium and phospholipid-dependent protein-kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J. Biol. Chem. 255, 2273–2276 (1980).

    CAS  PubMed  Google Scholar 

  5. Takai, Y., Kishimoto, A., Kikkawa, U., Mori, T. & Nishizuka, Y. Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid dependent protein-kinase system. Biochem. Biophys. Res. Commun. 91, 1218–1224 (1979).

    CAS  PubMed  Google Scholar 

  6. Sharkey, N. A., Leach, K. L. & Blumberg, P. M. Competitive inhibition by diacylglycerol of specific phorbol ester binding. Proc. Natl Acad. Sci. USA 81, 607–610 (1984). This paper was the first to unambiguously show that DAG and phorbol esters bind to the same site on PKC, providing reliable evidence that the phorbol esters function by mimicking the action of DAG.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hirai, T. & Chida, K. Protein kinase C ζ (PKCζ): activation mechanisms and cellular functions. J. Biochem. 133, 1–7 (2003).

    CAS  PubMed  Google Scholar 

  8. Suzuki, A., Akimoto, K. & Ohno, S. Protein kinase C λ/ι (PKCλ/ι): a PKC isotype essential for the development of multicellular organisms. J. Biochem. 133, 9–16 (2003).

    CAS  PubMed  Google Scholar 

  9. Moscat, J. & Diaz-Meco, M. T. The atypical protein kinase Cs — functional specificity mediated by specific protein adapters. EMBO Rep. 1, 399–403 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Newton, A. C. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem. J. 370, 361–371 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Parekh, D. B., Ziegler, W. & Parker, P. J. Multiple pathways control protein kinase C phosphorylation. EMBO J. 19, 496–503 (2000). References 10 and 11 are excellent reviews that describe the ways that transphosphorylation or autophosphorylation of PKC isozymes can control maturation and activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Garcia-Bermejo, M. L. et al. Diacylglycerol (DAG)-lactones, a new class of protein kinase C (PKC) agonists, induce apoptosis in LNCaP prostate cancer cells by selective activation of PKCα. J. Biol. Chem. 277, 645–655 (2002).

    CAS  PubMed  Google Scholar 

  13. Wang, Q. M. J. et al. Differential localization of protein kinase C δ by phorbol esters and related compounds using a fusion protein with green fluorescent protein. J. Biol. Chem. 274, 37233–37239 (1999).

    CAS  PubMed  Google Scholar 

  14. Jaken, S. & Parker, P. J. Protein kinase C binding partners. Bioessays 22, 245–254 (2000).

    CAS  PubMed  Google Scholar 

  15. Schechtman, D. & Mochly-Rosen, D. Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene 20, 6339–6347 (2001). This review highlights how PKC interaction with adaptor proteins might dictate specificity by regulating substrate interactions, and therefore serve as a basis for isozyme specificity.

    CAS  PubMed  Google Scholar 

  16. Colon-Gonzalez, F. & Kazanietz, M. G. C1 domains exposed: from diacylglycerol binding to protein–protein interactions. Biochim. Biophys. Acta 1761, 827–837 (2006).

    CAS  PubMed  Google Scholar 

  17. Hsiao, W. L. W., Housey, G. M., Johnson, M. D. & Weinstein, I. B. Cells that overproduce protein kinase-C are more susceptible to transformation by an activated H-Ras oncogene. Mol. Cell. Biol. 9, 2641–2647 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lacal, J. C., Fleming, T. P., Warren, B. S., Blumberg, P. M. & Aaronson, S. A. Involvement of functional protein-kinase-C in the mitogenic response to the H-Ras oncogene product. Mol. Cell. Biol. 7, 4146–4149 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wolfman, A. & Macara, I. G. Elevated levels of diacylglycerol and decreased phorbol ester sensitivity in Ras-transformed fibroblasts. Nature 325, 359–361 (1987).

    CAS  PubMed  Google Scholar 

  20. Dotto, G. P., Parada, L. F. & Weinberg, R. A. Specific growth-response of Ras-transformed embryo fibroblasts to tumor promoters. Nature 318, 472–475 (1985).

    CAS  PubMed  Google Scholar 

  21. Barr, L. F. et al. c-Myc gene-induced alterations in protein-kinase-C expression — a possible mechanism facilitating Myc–Ras gene complementation. Cancer Res. 51, 5514–5519 (1991).

    CAS  PubMed  Google Scholar 

  22. Borner, C., Ueffing, M., Jaken, S., Parker, P. J. & Weinstein, I. B. 2 closely-related isoforms of protein-kinase-C produce reciprocal effects on the growth of rat fibroblasts — possible molecular mechanisms. J. Biol. Chem. 270, 78–86 (1995).

    CAS  PubMed  Google Scholar 

  23. Han, E. K. H., Cacace, A. M., Sgambato, A. & Weinstein, I. B. Altered expression of cyclins and c-Fos in R6 cells that overproduce Pkc-ε. Carcinogenesis 16, 2423–2428 (1995).

    CAS  PubMed  Google Scholar 

  24. Cacace, A. M. et al. PKCε functions as an oncogene by enhancing activation of the Raf kinase. Oncogene 13, 2517–2526 (1996).

    CAS  PubMed  Google Scholar 

  25. Mischak, H. et al. Overexpression of protein kinase-C-δ and kinase-ε in NIH 3T3 cells induces opposite effects on growth, morphology, anchorage dependence, and tumorigenicity. J. Biol. Chem. 268, 6090–6096 (1993).

    CAS  PubMed  Google Scholar 

  26. Pan, Q., Bao, L. W., Teknos, T. N. & Merajver, S. D. Targeted disruption of protein kinase C ε reduces cell invasion and motility through inactivation of RhoA and RhoC GTPases in head and neck squamous cell carcinoma. Cancer Res. 66, 9379–9384 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tachado, S. D. et al. Regulation of tumor invasion and metastasis in protein kinase C ε-transformed NIH3T3 fibroblasts. J. Cell. Biochem. 85, 785–797 (2002).

    CAS  PubMed  Google Scholar 

  28. Jackson, D. N. & Foster, D. A. The enigmatic protein kinase C δ: complex roles in cell proliferatin and survival. FASEB J. 18, 627–636 (2004).

    CAS  PubMed  Google Scholar 

  29. Heit, I. et al. Involvement of protein kinase C δ in contact-dependent inhibition of growth in human and murine fibroblasts. Oncogene 20, 5143–5154 (2001).

    CAS  PubMed  Google Scholar 

  30. Hornia, A. et al. Antagonistic effects of protein kinase C α and δ on both transformation and phospholipase D activity mediated by the epidermal growth factor receptor. Mol. Cell. Biol. 19, 7672–7680 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Perletti, G. P., Marras, E., Concari, P., Piccinini, F. & Tashjian, A. H. PKCδ acts as a growth and tumor suppressor in rat colonic epithelial cells. Oncogene 18, 1251–1256 (1999).

    CAS  PubMed  Google Scholar 

  32. Lu, Z. M. et al. Tumor promotion by depleting cells of protein kinase C δ. Mol. Cell. Biol. 17, 3418–3428 (1997). This paper demonstrates that phorbol 12-myristate 13-acetate induces transformation-related phenotypes in a cell line overexpressing-Src, and provides strong evidence that the tumour-promoter activity of phorbol esters might be due to downregulation of a growth inhibitory PKC (PKCδ).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hennings, H. et al. Bryostatin-1, an activator of protein-kinase-C, inhibits tumor promotion by phorbol esters in sencar mouse skin. Carcinogenesis 8, 1343–1346 (1987).

    CAS  PubMed  Google Scholar 

  34. Szallasi, Z. et al. Bryostatin 1 protects protein kinase-C-δ from down-regulation in mouse keratinocytes in parallel with its inhibition of phorbol ester-induced differentiation. Mol. Pharmacol. 46, 840–850 (1994).

    CAS  PubMed  Google Scholar 

  35. Riobo, N. A., Haines, G. M. & Emerson, C. P. Protein kinase C-δ and mitogen-activated protein/extracellular signal-regulated kinase-1 control GLI activation in hedgehog signaling. Cancer Res. 66, 839–845 (2006).

    CAS  PubMed  Google Scholar 

  36. Kinoshita, N., Iioka, H., Miyakoshi, A. & Ueno, N. PKCδ is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements. Genes Dev. 17, 1663–1676 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang, X. H. et al. Antisense targeting protein kinase C α and β(1) inhibits gastric carcinogenesis. Cancer Res. 64, 5787–5794 (2004).

    CAS  PubMed  Google Scholar 

  38. Wheeler, D. L., Ness, K. J., Oberley, T. D. & Verma, A. K. Protein kinase C ε is linked to 12-O-tetradecanoylphorbol-13-acetate-induced tumor necrosis factor-α ectodomain shedding and the development of metastatic squamous cell carcinoma in protein kinase C ε transgenic mice. Cancer Res. 63, 6547–6555 (2003).

    CAS  PubMed  Google Scholar 

  39. Reddig, P. J. et al. Transgenic mice overexpressing protein kinase C ε in their epidermis exhibit reduced papilloma burden but enhanced carcinoma formation after tumor promotion. Cancer Res. 60, 595–602 (2000). This paper provides in vivo evidence for a pro-tumorigenic role of PKCε in a transgenic mouse model, and shows that elevated levels of PKCε in the epidermis lead to the development of carcinomas independently of papilloma formation.

    CAS  PubMed  Google Scholar 

  40. Reddig, P. J. et al. Transgenic mice overexpressing protein kinase C δ in the epidermis are resistant to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 59, 5710–5718 (1999).

    CAS  PubMed  Google Scholar 

  41. Gokmen-Polar, Y., Murray, N. R., Velasco, M. A., Gatalica, Z. & Fields, A. P. Elevated protein kinase C βII is an early promotive event in colon carcinogenesis. Cancer Res. 61, 1375–1381 (2001).

    CAS  PubMed  Google Scholar 

  42. Murray, N. R. et al. Overexpression of protein kinase C βII induces colonic hyperproliferation and increased sensitivity to colon carcinogenesis. J. Cell Biol. 145, 699–711 (1999). Transgenic mice overexpressing PKCβII in the intestinal epithelium show increased proliferation and susceptibility to azoxymethane-induced aberrant crypt foci, as well as activation of the APC–β-catenin signalling pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu, W. S. et al. Role of cyclooxygenase 2 in protein kinase C βII-mediated colon carcinogenesis. J. Biol. Chem. 278, 11167–11174 (2003).

    CAS  PubMed  Google Scholar 

  44. Zhang, J., Anastasiadis, P. Z., Liu, Y., Thompson, E. A. & Fields, A. P. Protein kinase C (PKC) β II induces cell invasion through a Ras/Mek-, PKCι/Rac1-dependent signaling pathway. J. Biol. Chem. 279, 22118–22123 (2004).

    CAS  PubMed  Google Scholar 

  45. Sledge, G. W. & Gokmen-Polar, Y. Protein kinase C-β as a therapeutic target in breast cancer. Semin. Oncol. 33, S15–S18 (2006).

    CAS  PubMed  Google Scholar 

  46. Graff, J. R. et al. The protein kinase C β-selective inhibitor, enzastaurin (LY317615. HCI), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res. 65, 7462–7469 (2005).

    CAS  PubMed  Google Scholar 

  47. Oberschmidt O. et al. Enzastaurin and pemetrexed exert synergistic antitumor activity in thyroid cancer cell lines in vitro. Int. J. Clin. Pharmacol. Ther. 43, 603–604 (2005).

    CAS  PubMed  Google Scholar 

  48. Querfeld, C. et al. The selective protein kinase C β inhibitor enzastaurin induces apoptosis in cutaneous T-cell lymphoma cell lines through the AKT pathway. J. Invest. Dermatol. 126, 1641–1647 (2006).

    CAS  PubMed  Google Scholar 

  49. Alvaro, V. et al. Invasive human pituitary-tumors express a point-mutated α-protein kinase-C. J. Clin. Endocrinol. Metabol. 77, 1125–1129 (1993).

    CAS  Google Scholar 

  50. Prevostel, C., Martin, A., Alvaro, V., Jaffiol, C. & Joubert, D. Protein kinase C α and tumorigenesis of the endocrine gland. Hormone Res. 47, 140–144 (1997).

    CAS  PubMed  Google Scholar 

  51. Zhu, Y. M. et al. The PKCα-D294G mutant found in pituitary and thyroid tumors fails to transduce extracellular signals. Cancer Res. 65, 4520–4524 (2005).

    CAS  PubMed  Google Scholar 

  52. Knauf, J. A. et al. Involvement of protein kinase C ε (PKCε) in thyroid cell death — a truncated chimeric PKCε cloned from a thyroid cancer cell line protects thyroid cells from apoptosis. J. Biol. Chem. 274, 23414–23425 (1999).

    CAS  PubMed  Google Scholar 

  53. Black, J. D. Protein kinase C-mediated regulation of the cell cycle. Front. Biosci. 5, D406–D423 (2000).

    CAS  PubMed  Google Scholar 

  54. Gavrielides, M. V., Frijhoff, A. F., Conti, C. J. & Kazanietz, M. G. Protein kinase C and prostate carcinogenesis: targeting the cell cycle and apoptotic mechanisms. Curr. Drug Targets 5, 431–443 (2004).

    CAS  PubMed  Google Scholar 

  55. Detjen, K. M. et al. Activation of protein kinase Cα inhibits growth of pancreatic cancer cells via p21cip-mediated G1 arrest. J. Cell Sci. 113, 3025–3035 (2000).

    CAS  PubMed  Google Scholar 

  56. Frey, M. R. et al. Protein kinase C isozyme-mediated cell cycle arrest involves induction of p21waf1/cip1 and p27kip1 and hypophosphorylation of the retinoblastoma protein in intestinal epithelial cells. J. Biol. Chem. 272, 9424–9435 (1997).

    CAS  PubMed  Google Scholar 

  57. Slosberg, E. D. et al. The α isoform of protein kinase C mediates phorbol ester-induced growth inhibition and p21cip1 induction in HC11 mammary epithelial cells. Oncogene 18, 6658–6666 (1999).

    CAS  PubMed  Google Scholar 

  58. Clark, J. A. et al. Involvement of the ERK signaling cascade in protein kinase C-mediated cell cycle arrest in intestinal epithelial cells. J. Biol. Chem. 279, 9233–9247 (2004).

    CAS  PubMed  Google Scholar 

  59. Frey, M. R. et al. Protein kinase C signaling mediates a program of cell cycle withdrawal in the intestinal epithelium. J. Cell Biol. 151, 763–777 (2000). This work points to a growth-inhibitory role for PKCα in intestinal epithelial cells and proposes mechanisms through which cell-cycle inhibition occurs by regulation of cyclins and CDK inhibitors.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Oster, H. & Leitges, M. Protein kinase Cα but not PKCζ suppresses intestinal tumor formation in ApcMin/+ mice. Cancer Res. 66, 6955–6963 (2006).

    CAS  PubMed  Google Scholar 

  61. Nakagawa, M. et al. Phorbol ester-induced G1 phase arrest selectively mediated by protein kinase Cδ-dependent induction of p21. J. Biol. Chem. 280, 33926–33934 (2005).

    CAS  PubMed  Google Scholar 

  62. Miyamoto, A. et al. Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cδ. Nature 416, 865–869 (2002).

    CAS  PubMed  Google Scholar 

  63. Czifra, G. et al. Insulin-like growth factor-I-coupled mitogenic signaling in primary cultured human skeletal muscle cells and in C2C12 myoblasts. A central role of protein kinase Cδ. Cell. Signal. 18, 1461–1472 (2006).

    CAS  PubMed  Google Scholar 

  64. Walker. J. L., Castagnino P., Chung. B. M., Kazanietz. M. G. & Assoian. R. K. Post-transcriptional destabilization of p21cip1 by protein kinase C in fibroblasts. J. Biol. Chem. 281, 38127–38132 (2006).

    CAS  PubMed  Google Scholar 

  65. Grossoni, V. C. et al. Protein kinase C δ enhances proliferation and survival of normal murine mammary cells. Mol. Carcinogen. 11 Jan 2007 (doi 10.1002/mc20287).

  66. Steinberg, S. F. Distinctive activation mechanisms and functions for protein kinase Cδ. Biochem. J. 384, 449–459 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gubina, E., Rinaudo, M. S., Szallasi, Z., Blumberg, P. M. & Mufson, R. A. Overexpression of protein kinase C isoform ε but not δ in human interleukin-3-dependent cells suppresses apoptosis and induces BCL-2 expression. Blood 91, 823–829 (1998).

    CAS  PubMed  Google Scholar 

  68. Okhrimenko, H. et al. Protein kinase C-ε: regulates the apoptosis and survival of glioma cells. Cancer Res. 65, 7301–7309 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gillespie, S., Zhang, X. D. & Hersey, P. Variable expression of protein kinase C ε in human melanoma cells regulates sensitivity to TRAIL-induced apoptosis. Mol. Cancer Ther. 4, 668–676 (2005).

    CAS  PubMed  Google Scholar 

  70. Lu, D. M., Huang, J. & Basu, A. Protein kinase C ε activates protein kinase B/Akt via DNA-PK to protect against tumor necrosis factor-α-induced cell death. J. Biol. Chem. 281, 22799–22807 (2006).

    CAS  PubMed  Google Scholar 

  71. Pardo, O. E. et al. FGF-2 protects small cell lung cancer cells from apoptosis through a complex involving PKCε, B-Raf and S6K2. EMBO J. 25, 3078–3088 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ding, L., Wang, H. M., Lang, W. H. & Xiao, L. Protein kinase C-ε promotes survival of lung cancer cells by suppressing apoptosis through dysregulation of the mitochondrial caspase pathway. J. Biol. Chem. 277, 35305–35313 (2002).

    CAS  PubMed  Google Scholar 

  73. Basu, A. & Weixel, K. M. Comparison of protein-kinase-C activity and isoform expression in cisplatin-sensitive and cisplatin-resistant ovarian-carcinoma cells. Int. J. Cancer 62, 457–460 (1995).

    CAS  PubMed  Google Scholar 

  74. Emoto, Y. et al. Proteolytic activation of protein kinase C δ by an ICE-like protease in apoptotic cells. EMBO J. 14, 6148–6156 (1995). This was the first demonstration that apoptotic stimuli lead to the proteolytic cleavage of a PKC. The constitutively active PKCδ catalytic fragment generated by caspase activation was later found to have a significant role in programmed cell death by ionizing radiation or DNA-damaging agents.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Denning, M. F., Wang, Y. H., Nickoloff, B. J. & Wrone-Smith, T. Protein kinase C δ is activated by caspase-dependent proteolysis during ultraviolet radiation-induced apoptosis of human keratinocytes. J. Biol. Chem. 273, 29995–30002 (1998).

    CAS  PubMed  Google Scholar 

  76. Reyland, M. E., Anderson, S. M., Matassa, A. A., Barzen, K. A. & Quissell, D. O. Protein kinase C δ is essential for etoposide-induced apoptosis in salivary gland acinar cells. J. Biol. Chem. 274, 19115–19123 (1999).

    CAS  PubMed  Google Scholar 

  77. Persaud, S. D., Hoang, V., Huang, J. & Basu, A. Involvement of proteolytic activation of PKC δ in cisplatin-induced apoptosis in human small cell lung cancer H69 cells. Int. J. Oncol. 27, 149–154 (2005).

    CAS  PubMed  Google Scholar 

  78. Humphries, M. J. et al. Suppression of apoptosis in the protein kinase C δ null mouse in vivo. J. Biol. Chem. 281, 9728–9737 (2006). This work shows that loss of PKCδ in mice is protective against gamma-radiation-induced apoptosis and that PKCδ function is needed for apoptosis in vivo . PKCδ is needed for JNK activation following DNA damage.

    CAS  PubMed  Google Scholar 

  79. Li, L. W., Lorenzo, P. S., Bogi, K., Blumberg, P. M. & Yuspa, S. H. Protein kinase C δ targets mitochondria, alters mitochondrial membrane potential, and induces apoptosis in normal and neoplastic keratinocytes when overexpressed by an adenoviral vector. Mol. Cell. Biol. 19, 8547–8558 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Majumder, P. K. et al. Mitochondrial translocation of protein kinase C δ in phorbol ester-induced cytochrome C release and apoptosis. J. Biol. Chem. 275, 21793–21796 (2000).

    CAS  PubMed  Google Scholar 

  81. Denning, M. F. et al. Caspase activation and disruption of mitochondrial membrane potential during UV radiation-induced apoptosis of human keratinocytes requires activation of protein kinase C. Cell Death Differ. 9, 40–52 (2002).

    CAS  PubMed  Google Scholar 

  82. DeVries, T. A., Neville, M. C. & Reyland, M. E. Nuclear import of PKCδ is required for apoptosis: identification of a novel nuclear import sequence. EMBO J. 21, 6050–6060 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kaul, S. et al. Tyrosine phosphorylation regulates the proteolytic activation of protein kinase C δ in dopaminergic neuronal cells. J. Biol. Chem. 280, 28721–28730 (2005).

    CAS  PubMed  Google Scholar 

  84. Blass, M., Kronfeld, I., Kazimirsky, G., Blumberg, P. M. & Brodie, C. Tyrosine phosphorylation of protein kinase C δ is essential for its apoptotic effect in response to etoposide. Mol. Cell. Biol. 22, 182–195 (2002). This paper shows that PKCδ, unlike most PKCs, can be regulated by tyrosine phosphorylation, and that this event is required for apoptosis induced by DNA-damaging agents. Relevant tyrosine-phosphorylation sites have been identified.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yuan, Z. M. et al. Activation of protein kinase C δ by the c-Abl tyrosine kinase in response to ionizing radiation. Oncogene 16, 1643–1648 (1998).

    CAS  PubMed  Google Scholar 

  86. Cross, T. et al. PKC-δ is an apoptotic lamin kinase. Oncogene 19, 2331–2337 (2000).

    CAS  PubMed  Google Scholar 

  87. Frasch, S. C. et al. Regulation of phospholipid scramblase activity during apoptosis and cell activation by protein kinase C δ. J. Biol. Chem. 275, 23065–23073 (2000).

    CAS  PubMed  Google Scholar 

  88. Bharti, A. et al. Inactivation of DNA-dependent protein kinase by protein kinase C δ: implications for apoptosis. Mol. Cell. Biol. 18, 6719–6728 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yoshida, K. et al. Protein kinase C δ activates topoisomerase IIα to induce apoptotic cell death in response to DNA damage. Mol. Cell. Biol. 26, 3414–3431 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gonzalez-Guerrico, A. M. & Kazanietz, M. G. Phorbol ester-induced apoptosis in prostate cancer cells via autocrine activation of the extrinsic apoptotic cascade — a key role for protein kinase C δ. J. Biol. Chem. 280, 38982–38991 (2005). This paper shows that the apoptotic effect of a PKC is mediated by an autocrine loop that involves activation of the extrinsic apoptotic pathway.

    CAS  PubMed  Google Scholar 

  91. Tanaka, Y., Gavrielides, M. V., Mitsuuchi, Y., Fujii, T. & Kazanietz, M. G. Protein kinase C promotes apoptosis in LNCaP prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway. J. Biol. Chem. 278, 33753–33762 (2003).

    CAS  PubMed  Google Scholar 

  92. Ways, D. K. et al. Mcf-7 breast-cancer cells transfected with protein-kinase C-α exhibit altered expression of other protein-kinase-C isoforms and display a more aggressive neoplastic phenotype. J. Clin. Invest. 95, 1906–1915 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tan, M., Li, P., Sun, M., Yin, G. & Yu, D. Upregulation and activation of PKCα by ERBB2 through Src promotes breast cancer cell invasion that can be blocked by combined treatment with PKCα and Src inhibitors. Oncogene 25, 3286–3295 (2006).

    CAS  PubMed  Google Scholar 

  94. Pan, Q. et al. Protein kinase C ε is a predictive biomarker of aggressive breast cancer and a validated target for RNA interference anticancer therapy. Cancer Res. 65, 8366–8371 (2005).

    CAS  PubMed  Google Scholar 

  95. Jackson, D. et al. Suppression of cell migration by protein kinase C δ. Oncogene 24, 3067–3072 (2005).

    CAS  PubMed  Google Scholar 

  96. Ng, T. et al. PKCα regulates β1 integrin-dependent cell motility through association and control of integrin traffic. EMBO J. 18, 3909–3923 (1999). PKCα regulates motility through the control of cell-surface expression and recycling of β1-integrin.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Parsons, M. et al. Site-directed perturbation of protein kinase C-integrin interaction blocks carcinoma cell chemotaxis. Mol. Cell. Biol. 22, 5897–5911 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, J. F., Crepin, M., Liu, J. M., Barritault, D. & Ledoux, D. FGF-2 and TPA induce matrix metalloproteinase-9 secretion in MCF-7 cells through PKC activation of the Ras/ERK pathway. Biochem. Biophys. Res. Commun. 293, 1174–1182 (2002).

    CAS  PubMed  Google Scholar 

  99. Sliva, D., English, D., Lyons, D. & Lloyd, F. P. Protein kinase C induces motility of breast cancers by upregulating secretion of urokinase-type plasminogen activator through activation of AP-1 and NF-κB. Biochem. Biophys. Res. Commun. 290, 552–557 (2002).

    CAS  PubMed  Google Scholar 

  100. Urtreger, A. J., Grossoni, V. C., Falbo, K. B., Kazanietz, M. G. & Joffe, E. Atypical protein kinase C-ζ modulates clonogenicity, motility, and secretion of proteolytic enzymes in murine mammary cells. Mol. Carcinog. 42, 29–39 (2005).

    CAS  PubMed  Google Scholar 

  101. Wellner, M. et al. The proliferative effect of vascular endothelial growth factor requires protein kinase C-α and protein kinase C-ζ. Arterioscler. Thromb. Vasc. Biol. 19, 178–185 (1999).

    CAS  PubMed  Google Scholar 

  102. Wu, L. W. et al. Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation. J. Biol. Chem. 275, 5096–5103 (2000).

    CAS  PubMed  Google Scholar 

  103. Xia, P. et al. Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J. Clin. Invest. 98, 2018–2026 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Suzuma, K. et al. Characterization of protein kinase C β isoform's action on retinoblastoma protein phosphorylation, vascular endothelial growth factor-induced endothelial cell proliferation, and retinal neovascularization. Proc. Natl Acad. Sci. USA 99, 721–726 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Takahashi, T., Ueno, H. & Shibuya, M. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18, 2221–2230 (1999).

    CAS  PubMed  Google Scholar 

  106. Wong, C. & Jin, Z. G. Protein kinase C-dependent protein kinase D activation modulates ERK signal pathway and endothelial cell proliferation by vascular endothelial growth factor. J. Biol. Chem. 280, 33262–33269 (2005).

    CAS  PubMed  Google Scholar 

  107. Yoshiji, H. et al. Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res. 59, 4413–4418 (1999).

    CAS  PubMed  Google Scholar 

  108. Teicher, B. A. et al. Antiangiogenic and antitumor effects of a protein kinase C β inhibitor in human HT-29 colon carcinoma and human CaKi1 renal cell carcinoma xenografts. Anticancer Res. 21, 3175–3184 (2001).

    CAS  PubMed  Google Scholar 

  109. Teicher, B. A. et al. Antiangiogenic and antitumor effects of a protein kinase C β inhibitor in murine Lewis lung carcinoma and human Calu-6 non-small-cell lung carcinoma xenografts. Cancer Chemother. Pharmacol. 48, 473–480 (2001).

    CAS  PubMed  Google Scholar 

  110. Teicher, B. A., Menon, K., Alvarez, E., Shih, C. & Faul, M. M. Antiangiogenic and antitumor effects of a protein kinase C β inhibitor in human breast cancer and ovarian cancer xenografts. Invest. New Drugs 20, 241–251 (2002).

    CAS  PubMed  Google Scholar 

  111. Teicher, B. A., Menon, K., Alvarez, E., Shih, P. L. C. & Faul, M. M. Antiangiogenic and antitumor effects of a protein kinase C β inhibitor in human hepatocellular and gastric cancer xenografts. In Vivo 15, 185–193 (2001).

    CAS  PubMed  Google Scholar 

  112. Wang, Q. M. J. PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol. Sci. 27, 317–323 (2006).

    CAS  PubMed  Google Scholar 

  113. Storz, P., Doppler, H. & Toker, A. Protein kinase C δ selectively regulates protein kinase D-dependent activation of NF-κB in oxidative stress signaling. Mol. Cell. Biol. 24, 2614–2626 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Storz P, T. A. Protein kinase D mediates a stress-induced NF-κB activation and survival pathway. EMBO J. 22, 109–120 (2003).

    PubMed  PubMed Central  Google Scholar 

  115. Mihailovic, T. et al. Protein kinase D2 mediates activation of nuclear factor κB by Bcr-Abl in Bcr-Abl(+) human myeloid leukemia cells. Cancer Res. 64, 8939–8944 (2004).

    CAS  PubMed  Google Scholar 

  116. Shindo, M. et al. Synthesis and phorbol ester binding of the cysteine-rich domains of diacylglycerol kinase (DGK) isozymes — DGKγ and DGKγ are new targets of tumor-promoting phorbol esters. J. Biol. Chem. 278, 18448–18454 (2003).

    CAS  PubMed  Google Scholar 

  117. Luo, B., Regier, D. S., Prescott, S. M. & Topham, M. K. Diacylglycerol kinases. Cell. Signal. 16, 983–989 (2004).

    CAS  PubMed  Google Scholar 

  118. Bacchiocchi, R. et al. Activation of α-diacylglycerol kinase is critical for the mitogenic properties of anaplastic lymphoma kinase. Blood 106, 2175–2182 (2005).

    CAS  PubMed  Google Scholar 

  119. Crotty, T. et al. Diacylglycerol kinase δ regulates protein kinase C and epidermal growth factor receptor signaling. Proc. Natl Acad. Sci. USA 103, 15485–15490 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Macdonald, M. L., Mack, K. F., Richardson, C. N. & Glomset, J. A. Regulation of diacylglycerol kinase reaction in Swiss 3t3-cells. Increased phosphorylation of endogenous diacylglycerol and decreased phosphorylation of didecanoylglycerol in response to platelet-derived growth-factor. J. Biol. Chem. 263, 1575–1583 (1988).

    CAS  PubMed  Google Scholar 

  121. Tsushima, S. et al. Diacylglycerol kinase γ serves as an upstream suppressor of Rac1 and lamellipodium formation. J. Biol. Chem. 279, 28603–28613 (2004).

    CAS  PubMed  Google Scholar 

  122. Stone, J. C. Regulation of Ras in lymphocytes: get a GRP. Biochem. Soc. Trans. 34, 858–861 (2006).

    CAS  PubMed  Google Scholar 

  123. Ebinu, J. O. et al. RasGRP, a Ras guanyl nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science 280, 1082–1086 (1998).

    CAS  PubMed  Google Scholar 

  124. Irie, K., Masuda, A., Shindo, M., Nakagawa, Y. & Ohigashi, H. Tumor promoter binding of the protein kinase CC1 homology domain peptides of RasGRPs, chimaerins, and Unc13s. Bioorg. Med. Chem. 12, 4575–4583 (2004).

    CAS  PubMed  Google Scholar 

  125. Zheng, Y. et al. Phosphorylation of RasGRP3 on threonine 133 provides a mechanistic link between PKC and Ras signaling systems in B cells. Blood 105, 3648–3654 (2005).

    CAS  PubMed  Google Scholar 

  126. Bivona, T. G. et al. Phospholipase C γ activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424, 694–698 (2003).

    CAS  PubMed  Google Scholar 

  127. Ebinu, J. O. et al. RasGRP links T-cell receptor signaling to Ras. Blood 95, 3199–3203 (2000).

    CAS  PubMed  Google Scholar 

  128. Dower, N. A. et al. RasGRP essential for mouse thymocyte differentiation and TCR signaling. Nature Immunol. 1, 317–321 (2000).

    CAS  Google Scholar 

  129. Norment, A. M. et al. Transgenic expression of RasGRP1 induces the maturation of double-negative thymocytes and enhances the production of CD8 single-positive thymocytes. J. Immunol. 170, 1141–1149 (2003).

    CAS  PubMed  Google Scholar 

  130. Klinger, M. B., Guilbault, B., Goulding, R. E. & Kay, R. J. Deregulated expression of RasGRP1 initiates thymic lymphomagenesis independently of T-cell receptors. Oncogene 24, 2695–2704 (2005). This paper links the DAG receptor RasGRP1 to cancer, as transgenic RasGRP1 mice develop T-cell malignancies.

    CAS  PubMed  Google Scholar 

  131. Kim, R. et al. Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphornas. J. Virol. 77, 2056–2062 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Coughlin, J. J., Stang, S. L., Dower, N. A. & Stone, J. C. RasGRP1 and RasGRP3 regulate B cell proliferation by facilitating B cell receptor–Ras signaling. J. Immunol. 175, 7179–7184 (2005).

    CAS  PubMed  Google Scholar 

  133. Yang, Y. et al. RasGRP4, a new mast cell-restricted Ras guanine nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Identification of defective variants of this signaling protein in asthma, mastocytosis, and mast cell leukemia patients and demonstration of the importance of RasGRP4 in mast cell development and function. J. Biol. Chem. 277, 25756–25774 (2002).

    CAS  PubMed  Google Scholar 

  134. Roberts, D. M. et al. A vascular gene trap screen defines RasGRP3 as an angiogenesis-regulated gene required for the endothelial response to phorbol esters. Mol. Cell. Biol. 24, 10515–10528 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Rambaratsingh, R. A., Stone, J. C., Blumberg, P. M. & Lorenzo, P. S. RasGRP1 represents a novel non-protein kinase C phorbol ester signaling pathway in mouse epidermal keratinocytes. J. Biol. Chem. 278, 52792–52801 (2003).

    CAS  PubMed  Google Scholar 

  136. Oki-Idouchi, C. E. & Lorenzo, P. S. Transgenic overexpression of RasGRP1 in mouse epidermis results in spontaneous tumors of the skin. Cancer Res. 67, 276–280 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Hall, C. et al. Novel human-brain cDNA-encoding a 34,000 Mr protein N-chimaerin, related to both the regulatory domain of protein kinase-C and BCR, the product of the breakpoint cluster region gene. J. Mol. Biol. 211, 11–16 (1990).

    CAS  PubMed  Google Scholar 

  138. Hall, C. et al. α2-chimaerin, a Cdc42/Rac1 regulator, is selectively expressed in the rat embryonic nervous system and is involved in neuritogenesis in N1E-115 neuroblastoma cells. J. Neurosci. 21, 5191–5202 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Leskow, F. C., Holloway, B. A., Wang, H. B., Mullins, M. C. & Kazanietz, M. G. The zebrafish homologue of mammalian chimerin Rac-GAPs is implicated in epiboly progression during development. Proc. Natl Acad. Sci. USA 103, 5373–5378 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Menna, P. L. et al. Inhibition of aggressiveness of metastatic mouse mammary carcinoma cells by the β2-chimaerin GAP domain. Cancer Res. 63, 2284–2291 (2003).

    CAS  PubMed  Google Scholar 

  141. Wang, H. B. et al. Phospholipase C γ/diacylglycerol-dependent activation of β2-chimaerin restricts EGF-induced Rac signaling. EMBO J. 25, 2062–2074 (2006). This paper provides the first evidence that a Rac-GAP can be regulated by a tyrosine-kinase receptor through a DAG-dependent mechanism. Activation of β2-chimaerin attenuates EGF-induced Rac signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Siliceo, M. et al. β2-chimaerin provides a diacylglycerol-dependent mechanism for regulation of adhesion and chemotaxis of T cells. J. Cell Sci. 119, 141–152 (2006).

    CAS  PubMed  Google Scholar 

  143. Buttery, P. et al. The diacylglycerol-binding protein α1-chimaerin regulates dendritic morphology. Proc. Natl Acad. Sci. USA 103, 1924–1929 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang, C. F., Liu, Y., Leskow, F. C., Weaver, V. M. & Kazanietz, M. G. Rac-GAP-dependent inhibition of breast cancer cell proliferation by β2-chimerin. J. Biol. Chem. 280, 24363–24370 (2005).

    CAS  PubMed  Google Scholar 

  145. Hoelzinger, D. B. et al. Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia 7, 7–16 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Yuan, S. X., Miller, D. W., Barnett, G. H., Hahn, J. F. & Williams, B. R. G. Identification and characterization of human β2-chimaerin- association with malignant transformation in astrocytoma. Cancer Res. 55, 3456–3461 (1995).

    CAS  PubMed  Google Scholar 

  147. Madani, S., Hichami, A., Charkaoui-Malki, M. & Khan, N. A. Diacylglycerols containing omega 3 and omega 6 fatty acids bind to RasGRP and modulate MAP kinase activation. J. Biol. Chem. 279, 1176–1183 (2004).

    CAS  PubMed  Google Scholar 

  148. Madani, S., Hichami, A., Legrand, A., Belleville, J. & Khan, N. A. Implication of acyl chain of diacylglycerols in activation of different isoforms of protein kinase C. FASEB J. 15, 2595–2601 (2001).

    CAS  PubMed  Google Scholar 

  149. Pu, Y. M. et al. A novel diacylglycerol-lactone shows marked selectivity in vitro among C1 domains of protein kinase C (PKC) isoforms α and δ as well as selectivity for RasGRP compared with PKCα. J. Biol. Chem. 280, 27329–27338 (2005).

    CAS  PubMed  Google Scholar 

  150. Barrett, J. C. Mechanisms of multistep carcinogenesis and carcinogen risk assessment. Environ. Health Perspect. 100, 9–20 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Blumberg P. M. et al. Phorbol ester receptors and the in vitro effects of tumor promoters. Ann. N. Y. Acad. Sci. 407, 303–315 (1983).

    CAS  PubMed  Google Scholar 

  152. Giorgione, J. R., Lin, J. H., McCammon, J. A. & Newton, A. C. Increased membrane affinity of the C1 domain of protein kinase Cδ compensates for the lack of involvement of its C2 domain in membrane recruitment. J. Biol. Chem. 281, 1660–1669 (2006).

    CAS  PubMed  Google Scholar 

  153. Gallegos, L. L., Kunkel, M. T. & Newton, A. C. Targeting protein kinase C activity reporter to discrete intracellular regions reveals spatiotemporal differences in agonist-dependent signaling. J. Biol. Chem. 281, 30947–30956 (2006).

    CAS  PubMed  Google Scholar 

  154. Schultz, A., Ling, M. & Larsson, C. Identification of an amino acid residue in the protein kinase CC1b domain crucial for its localization to the Golgi network. J. Biol. Chem. 279, 31750–31760 (2004).

    CAS  PubMed  Google Scholar 

  155. Prevostel, C., Alice, V., Joubert, D. & Parker, P. J. Protein kinase Cα actively downregulates through caveolae-dependent traffic to an endosomal compartment. J. Cell Sci. 113, 2575–2584 (2000).

    CAS  PubMed  Google Scholar 

  156. Srivastava, J., Procyk, K. J., Iturrioz, X. & Parker, P. J. Phosphorylation is required for PMA- and cell-cycle-induced degradation of protein kinase Cδ. Biochem. J. 368, 349–355 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Lee, H. W., Smith, L., Pettit, G. R., Vinitsky, A. & Smith, J. B. Ubiquitination of protein kinase C-α and degradation by the proteasome. J. Biol. Chem. 271, 20973–20976 (1996).

    CAS  PubMed  Google Scholar 

  158. Leontieva, O. V. & Black, J. D. Identification of two distinct pathways of protein kinase Cα down-regulation in intestinal epithelial cells. J. Biol. Chem. 279, 5788–5801 (2004).

    CAS  PubMed  Google Scholar 

  159. Lu, Z. M. et al. Activation of protein kinase C triggers its ubiquitination and degradation. Mol. Cell. Biol. 18, 839–845 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Cataisson, C., Pearson, A. J., Torgerson, S., Nedospasov, S. A. & Yuspa, S. H. Protein kinase Cα-mediated chemotaxis of neutrophils requires NF-κB activity but is independent of TNFα signaling in mouse skin in vivo. J. Immunol. 174, 1686–1692 (2005).

    CAS  PubMed  Google Scholar 

  161. Wang, H. Q. & Smart, R. C. Overexpression of protein kinase C-α in the epidermis of transgenic mice results in striking alterations in phorbol ester-induced inflammation and COX-2, MIP-2 and TNF-α expression but not tumor promotion. J. Cell Sci. 112, 3497–3506 (1999).

    CAS  PubMed  Google Scholar 

  162. Hara, T. et al. Deficiency of protein kinase Cα in mice results in impairment of epidermal hyperplasia and enhancement of tumor formation in two-stage skin carcinogenesis. Cancer Res. 65, 7356–7362 (2005).

    CAS  PubMed  Google Scholar 

  163. Liu, Y. et al. Protein kinase CβII regulates its own expression in rat intestinal epithelial cells and the colonic epithelium in vivo. J. Biol. Chem. 279, 45556–45563 (2004).

    CAS  PubMed  Google Scholar 

  164. Chida, K. et al. Disruption of protein kinase Cη results in impairment of wound healing and enhancement of tumor formation in mouse skin carcinogenesis. Cancer Res. 63, 2404–2408 (2003).

    CAS  PubMed  Google Scholar 

  165. Felli, M. P. et al. PKCθ mediates pre-TCR signaling and contributes to Notch3-induced T-cell leukemia. Oncogene 24, 992–1000 (2005).

    CAS  PubMed  Google Scholar 

  166. Varga, A. et al. Tumor grade-dependent alterations in the protein kinase C isoform pattern in urinary bladder carcinomas. Eur. Urol. 46, 462–465 (2004).

    CAS  PubMed  Google Scholar 

  167. Benzil, D. L., Finkelstein, S. D., Epstein, M. H. & Finch, P. W. Expression pattern of α-protein kinase-C in human astrocytomas indicates a role in malignant progression. Cancer Res. 52, 2951–2956 (1992).

    CAS  PubMed  Google Scholar 

  168. Mandil, R. et al. Protein kinase Cα and protein kinase Cδ play opposite roles in the proliferation and apoptosis of glioma cells. Cancer Res. 61, 4612–4619 (2001).

    CAS  PubMed  Google Scholar 

  169. Ainsworth, P. D., Winstanley, J. H. R., Pearson, J. M., Bishop, H. M. & Garrod, D. R. Protein kinase Cα expression in normal breast, ductal carcinoma in situ and invasive ductal carcinoma. Eur. J. Cancer 40, 2269–2273 (2004).

    CAS  PubMed  Google Scholar 

  170. Kerfoot, C., Huang, W. D. & Rotenberg, S. A. Immunohistochemical analysis of advanced human breast carcinomas reveals downregulation of protein kinase Cα. J. Histochem. Cytochem. 52, 419–422 (2004).

    CAS  PubMed  Google Scholar 

  171. Weichert, W., Gekeler, V., Denkert, C., Dietel, M. & Hauptmann, S. Protein kinase C isoform expression in ovarian carcinoma correlates with indicators of poor prognosis. Int. J. Oncol. 23, 633–639 (2003).

    CAS  PubMed  Google Scholar 

  172. Brenner, W. et al. Protein kinase Cη is associated with progression of renal cell carcinoma (RCC). Anticancer Res. 23, 4001–4006 (2003).

    CAS  PubMed  Google Scholar 

  173. Verstovsek, G., Byrd, A., Frey, M. R., Petrelli, N. J. & Black, J. D. Colonocyte differentiation is associated with increased expression and altered distribution of protein kinase C isozymes. Gastroenterology 115, 75–85 (1998).

    CAS  PubMed  Google Scholar 

  174. Hidaka, M. et al. Altered expression of protein-kinase-C in adult T-cell leukemia-cells. Int. J. Hematol. 56, 135–141 (1992).

    CAS  PubMed  Google Scholar 

  175. Doi, S., Goldstein, D., Hug, H. & Weinstein, I. B. Expression of multiple isoforms of protein-kinase-C in normal human colon mucosa and colon tumors and decreased levels of protein-kinase-C-β and protein-kinase-C-η messenger-RNAs in the tumors. Mol. Carcinogen. 11, 197–203 (1994).

    CAS  Google Scholar 

  176. Levy, M. F. et al. Decreased levels of protein-kinase-C enzyme-activity and protein-kinase-C messenger-RNA in primary colon tumors. Dis. Colon Rectum 36, 913–921 (1993).

    CAS  PubMed  Google Scholar 

  177. Pongracz, J., Clark, P., Neoptolemos, J. P. & Lord, J. M. Expression of protein-kinase-C isoenzymes in colorectal-cancer tissue and their differential activation by different bile-acids. Int. J. Cancer 61, 35–39 (1995).

    CAS  PubMed  Google Scholar 

  178. Cornford, P. et al. Protein kinase C isoenzyme patterns characteristically modulated in early prostate cancer. Am. J. Pathol. 154, 137–144 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Gilhooly, E. M. et al. Loss of expression of protein kinase Cβ is a common phenomenon in human malignant melanoma: a result of transformation or differentiation? Melanoma Res. 11, 355–369 (2001).

    CAS  PubMed  Google Scholar 

  180. Koren, R. et al. Protein kinase C (PKC) isoenzymes immunohistochemistry in lymph node revealing solution-fixed, paraffin-embedded bladder tumors. Appl. Immunohistochem. Mol. Morphol. 8, 166–171 (2000).

    CAS  PubMed  Google Scholar 

  181. Langzam, L. et al. Patterns of protein kinase C isoenzyme expression in transitional cell carcinoma of bladder. Am. J. Clinical Pathol. 116, 377–385 (2001).

    CAS  Google Scholar 

  182. Kuranami, M. et al. Differential expression of protein-kinase-C isoforms in human colorectal cancers. J. Surgical Res. 58, 233–239 (1995).

    CAS  Google Scholar 

  183. Wu, E. X. et al. PKCβ: a rational therapeutic target in diffuse large B-cell lymphoma. Blood 100, 202A–202A (2002).

    Google Scholar 

  184. Hans, C. P. et al. Expression of PKC-β or cyclin D2 predicts for inferior survival in diffuse large B-cell lymphoma. Modern Pathol. 18, 1377–1384 (2005).

    CAS  Google Scholar 

  185. D'Costa, A. M. et al. The proapoptotic tumor suppressor protein kinase C-δ is lost in human squamous cell carcinomas. Oncogene 25, 378–386 (2006).

    CAS  PubMed  Google Scholar 

  186. Sharif, T. R. & Sharif, M. Overexpression of protein kinase Cε in astroglial brain tumor derived cell lines and primary tumor samples. Int. J. Oncol. 15, 237–243 (1999).

    CAS  PubMed  Google Scholar 

  187. Knauf, J. A. et al. Isozyme-specific abnormalities of PKC in thyroid cancer: evidence for post-transcriptional changes in PKCε. J. Clin. Endocrinol. Metab. 87, 2150–2159 (2002).

    CAS  PubMed  Google Scholar 

  188. Beck, J. et al. Multiple gene expression analysis reveals distinct differences between G2 and G3 stage breast cancers, and correlations of PKCη with MDR1, MRP and LRP gene expression. Br. J. Cancer 77, 87–91 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Masso-Welch, P. A. et al. Altered expression and localization of PKCη in human breast tumors. Breast Cancer Res. Treat. 68, 211–223 (2001).

    CAS  PubMed  Google Scholar 

  190. Blay, P. et al. Protein kinase Cθ is highly expressed in gastrointestinal stromal tumors but not in other mesenchymal neoplasias. Clin. Cancer Res. 10, 4089–4095 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Kazanietz laboratory is funded by grants from the US National Institutes of Health and Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo G. Kazanietz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

colon cancer

gastric cancer

glioma

leukaemia

non-small-cell lung carcinoma

ovarian carcinoma

prostate cancer

squamous cell carcinoma

T-cell lymphoma

thyroid cancer

FURTHER INFORMATION

Marcelo Kazanietz homepage

Glossary

ApcMin/+ mouse

A mouse strain harbouring a nonsense mutation at codon 850 in one allele of the Apc (adenomatous polyposis coli) gene. Animals develop multiple intestinal adenomas at an early age.

Mitochondrial-dependent apoptosis

A programmed cell death, generally triggered by stress, which is initiated by loss of mitochondrial integrity and a concomitant release of mitochondrial proteins such as cytochrome c.

Vascular gene-trap screen

A screen for proteins that are expressed in developing vascular cells using random insertion of a gene-trap reporter vector into intronic regions of the genomic DNA of embryonic stem cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griner, E., Kazanietz, M. Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 7, 281–294 (2007). https://doi.org/10.1038/nrc2110

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing