Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Molecular mechanisms of cancer development in obesity

Abstract

The increasing incidence of obesity and its co-morbid conditions poses a great challenge to global health. In addition to cardiovascular disease and diabetes, epidemiological data demonstrate a link between obesity and multiple types of cancer. The molecular mechanisms underlying how obesity causes an increased risk of cancer are poorly understood. Obesity disrupts the dynamic role of the adipocyte in energy homeostasis, resulting in inflammation and alteration of adipokine (for example, leptin and adiponectin) signalling. Additionally, obesity causes secondary changes that are related to insulin signalling and lipid deregulation that may also foster cancer development. Understanding these molecular links may provide an avenue for preventive and therapeutic strategies to reduce cancer risk and mortality in an increasingly obese population.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in adipose tissue in obesity.
Figure 2: Adipokine and inflammatory signalling in obesity.
Figure 3: Insulin signalling in obesity.
Figure 4: Summary of pathways that may link obesity to cancer development.

Similar content being viewed by others

References

  1. Flegal, K. M., Carroll, M. D., Ogden, C. L. & Curtin, L. R. Prevalence and trends in obesity among US adults, 1999–2008 JAMA 303, 235–41 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Finucane, M. M. et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377, 557–567 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Renehan, A. G., Tyson, M., Egger, M., Heller, R. F. & Zwahlen, M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569–578 (2008).

    Article  PubMed  Google Scholar 

  4. Lichtman, M. A. Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma. Oncologist 15, 1083–1101 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li, D. et al. Body mass index and risk, age of onset, and survival in patients with pancreatic cancer. JAMA 301, 2553–2562 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. MacInnis, R. J. & English, D. R. Body size and composition and prostate cancer risk: systematic review and meta-regression analysis. Cancer Causes Control 17, 989–1003 (2006).

    Article  PubMed  Google Scholar 

  7. Key, T. J. et al. Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J. Natl Cancer Inst. 95, 1218–1226 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Lofdahl, H. E. et al. Increased population prevalence of reflux and obesity in the United Kingdom compared with Sweden: a potential explanation for the difference in incidence of esophageal adenocarcinoma. Eur. J. Gastroenterol. Hepatol. 23, 128–132 (2011).

    Article  PubMed  Google Scholar 

  9. Jeffreys, M., Smith, G. D., Martin, R. M., Frankel, S. & Gunnell, D. Childhood body mass index and later cancer risk: a 50-year follow-up of the Boyd Orr study. Int. J. Cancer 112, 348–351 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Brown, K. A. & Simpson, E. R. Obesity and breast cancer: progress to understanding the relationship. Cancer Res. 70, 4–7 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Hotamisligil, G. S., Arner, P., Caro, J. F., Atkinson, R. L. & Spiegelman, B. M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95, 2409–2415 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fried, S. K., Bunkin, D. A. & Greenberg, A. S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab. 83, 847–850 (1998).

    CAS  PubMed  Google Scholar 

  14. Sawdey, M. S. & Loskutoff, D. J. Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factor-alpha, and transforming growth factor-beta. J. Clin. Invest. 88, 1346–1353 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ruan, H., Zarnowski, M. J., Cushman, S. W. & Lodish, H. F. Standard isolation of primary adipose cells from mouse epididymal fat pads induces inflammatory mediators and down-regulates adipocyte genes. J. Biol. Chem. 278, 47585–47593 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carswell, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl Acad. Sci. USA 72, 3666–3670 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leibovich, S. J. et al. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329, 630–632 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Orosz, P. et al. Enhancement of experimental metastasis by tumor necrosis factor. J. Exp. Med. 177, 1391–1398 (1993).

    Article  CAS  Google Scholar 

  21. Popivanova, B. K. et al. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Invest. 118, 560–570 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Moore, R. J. et al. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nature Med. 5, 828–831 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Knight, B. et al. Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. J. Exp. Med. 192, 1809–1818 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jain, S. S. & Bird, R. P. Elevated expression of tumor necrosis factor-alpha signaling molecules in colonic tumors of Zucker obese (fa/fa) rats. Int. J. Cancer 127, 2042–2050 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Kern, P. A., Ranganathan, S., Li, C., Wood, L. & Ranganathan, G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 280, E745–751 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Naugler, W. E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Bredel, M. et al. NFKBIA Deletion in Glioblastomas. N. Engl. J. Med. (2010).

  29. Calado, D. P. et al. Constitutive canonical NF-kappaB activation cooperates with disruption of BLIMP1 in the pathogenesis of activated B cell-like diffuse large cell lymphoma. Cancer Cell 18, 580–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, W. et al. The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin. Cancer Res. 5, 119–127 (1999).

    CAS  PubMed  Google Scholar 

  31. Pikarsky, E. et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Wunderlich, F. T. et al. Hepatic NF-kappa B essential modulator deficiency prevents obesity-induced insulin resistance but synergizes with high-fat feeding in tumorigenesis. Proc. Natl Acad. Sci. USA 105, 1297–1302 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mohamed-Ali, V. et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J. Clin. Endocrinol. Metab. 82, 4196–4200 (1997).

    CAS  PubMed  Google Scholar 

  34. Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Vaisse, C. et al. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nature Genet. 14, 95–97 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Dano, K. et al. Plasminogen activation and cancer. Thromb. Haemost. 93, 676–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Ferrara, N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol. Biol. Cell 21, 687–690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Foekens, J. A. et al. Plasminogen activator inhibitor-1 and prognosis in primary breast cancer. J. Clin. Oncol. 12, 1648–1658 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Mutoh, M. et al. Plasminogen activator inhibitor-1 (Pai-1) blockers suppress intestinal polyp formation in Min. mice. Carcinogenesis 29, 824–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Bajou, K. et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nature Med. 4, 923–928 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Bajou, K. et al. Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis. Cancer Cell 14, 324–334 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Cohen, P. et al. Selective deletion of leptin receptor in neurons leads to obesity. J. Clin. Invest. 108, 1113–1121 (2001).

    Article  CAS  Google Scholar 

  45. Snoussi, K. et al. Leptin and leptin receptor polymorphisms are associated with increased risk and poor prognosis of breast carcinoma. BMC Cancer 6, 38 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Howard, J. M., Pidgeon, G. P. & Reynolds, J. V. Leptin and gastro-intestinal malignancies. Obes Rev. 11, 863–874 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Jarde, T., Perrier, S., Vasson, M. P. & Caldefie-Chezet, F. Molecular mechanisms of leptin and adiponectin in breast cancer. Eur. J. Cancer 47, 33–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Maffei, M. et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Med. 1, 1155–1161 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Lagiou, P. et al. Leptin in relation to prostate cancer and benign prostatic hyperplasia. Int. J. Cancer 76, 25–28 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Stattin, P. et al. Leptin is associated with increased prostate cancer risk: a nested case-referent study. J. Clin. Endocrinol. Metab. 86, 1341–1345 (2001).

    CAS  PubMed  Google Scholar 

  51. Mantzoros, C. S., Bolhke, K., Moschos, S. & Cramer, D. W. Leptin in relation to carcinoma in situ of the breast: a study of pre-menopausal cases and controls. Int. J. Cancer 80, 523–526 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Tamakoshi, K. et al. Leptin is associated with an increased female colorectal cancer risk: a nested case-control study in Japan. Oncology 68, 454–461 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Banks, A. S., Davis, S. M., Bates, S. H. & Myers, M. G., Jr. Activation of downstream signals by the long form of the leptin receptor. J. Biol. Chem. 275, 14563–14572 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Hardwick, J. C., Van Den Brink, G. R., Offerhaus, G. J., Van Deventer, S. J. & Peppelenbosch, M. P. Leptin is a growth factor for colonic epithelial cells. Gastroenterology 121, 79–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Dieudonne, M. N. et al. Leptin mediates a proliferative response in human MCF7 breast cancer cells. Biochem. Biophys. Res. Commun. 293, 622–628 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Onuma, M., Bub, J. D., Rummel, T. L. & Iwamoto, Y. Prostate cancer cell-adipocyte interaction: leptin mediates androgen-independent prostate cancer cell proliferation through c-Jun NH2-terminal kinase. J. Biol. Chem. 278, 42660–42667 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Choi, J. H., Park, S. H., Leung, P. C. & Choi, K. C. Expression of leptin receptors and potential effects of leptin on the cell growth and activation of mitogen-activated protein kinases in ovarian cancer cells. J. Clin. Endocrinol. Metab. 90, 207–210 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Amemori, S. et al. Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am. J. Physiol. Gastrointest Liver Physiol. 292, G923–929 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Catalano, S. et al. Leptin induces, via ERK1/ERK2 signal, functional activation of estrogen receptor alpha in MCF-7 cells. J. Biol. Chem. 279, 19908–19915 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Teraoka, N. et al. High susceptibility to azoxymethane-induced colorectal carcinogenesis in obese KK-A(y) mice. Int. J. Cancer 129, 528–535 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Aparicio, T. et al. Leptin reduces the development of the initial precancerous lesions induced by azoxymethane in the rat colonic mucosa. Gastroenterology 126, 499–510 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Park, J., Kusminski, C. M., Chua, S. C. & Scherer, P. E. Leptin receptor signaling supports cancer cell metabolism through suppression of mitochondrial respiration in vivo. Am. J. Pathol. 177, 3133–3144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697–10703 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Barb, D., Williams, C. J., Neuwirth, A. K. & Mantzoros, C. S. Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence. Am. J. Clin. Nutr. 86, s858–s866 (2007).

    Article  PubMed  Google Scholar 

  66. Tworoger, S. S. et al. Plasma adiponectin concentrations and risk of incident breast cancer. J. Clin. Endocrinol. Metab. 92, 1510–1516 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Dal Maso, L. et al. Circulating adiponectin and endometrial cancer risk. J. Clin. Endocrinol. Metab. 89, 1160–1163 (2004).

    Article  CAS  Google Scholar 

  68. Cust, A. E. et al. Plasma adiponectin levels and endometrial cancer risk in pre- and postmenopausal women. J. Clin. Endocrinol. Metab. 92, 255–263 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Soliman, P. T., Cui, X., Zhang, Q., Hankinson, S. E. & Lu, K. H. Circulating adiponectin levels and risk of endometrial cancer: the prospective Nurses' Health Study. Am. J. Obstet. Gynecol. 204, 167 e1–e5 (2011).

    Article  CAS  Google Scholar 

  70. Kaklamani, V. G. et al. Variants of the adiponectin (ADIPOQ) and adiponectin receptor 1 (ADIPOR1) genes and colorectal cancer risk. JAMA 300, 1523–1531 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bub, J. D., Miyazaki, T. & Iwamoto, Y. Adiponectin as a growth inhibitor in prostate cancer cells. Biochem. Biophys. Res. Commun. 340, 1158–1166 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Kim, A. Y. et al. Adiponectin represses colon cancer cell proliferation via AdipoR1- and -R2-mediated AMPK activation. Mol. Endocrinol. 24, 1441–1452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lam, J. B. et al. Adiponectin haploinsufficiency promotes mammary tumor development in MMTV-PyVT mice by modulation of phosphatase and tensin homolog activities. PLoS One 4, e4968 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Fogarty, S. & Hardie, D. G. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. Acta 1804, 581–591 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Sharma, D. et al. Adiponectin antagonizes the oncogenic actions of leptin in hepatocellular carcinogenesis. Hepatology 52, 1713–1722 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Sun, Y. & Lodish, H. F. Adiponectin deficiency promotes tumor growth in mice by reducing macrophage infiltration. PLoS One 5, e11987 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nature Med. 17, 55–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Ogretmen, B. & Hannun, Y. A. Biologically active sphingolipids in cancer pathogenesis and treatment. Nature Rev. Cancer 4, 604–616 (2004).

    Article  CAS  Google Scholar 

  79. Grossmann, M. E. et al. Role of the adiponectin leptin ratio in prostate cancer. Oncol. Res. 18, 269–277 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Rabe, K., Lehrke, M., Parhofer, K. G. & Broedl, U. C. Adipokines and insulin resistance. Mol. Med. 14, 741–751 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sood, A. Obesity, adipokines, and lung disease. J. Appl. Physiol. 108, 744–753 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, Y., Bellows, C. F. & Kolonin, M. G. Adipose tissue-derived progenitor cells and cancer. World J. Stem Cells 2, 103–113 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhang, Y. et al. White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Res. 69, 5259–5266 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Pasqualini, R. & Ruoslahti, E. Organ. targeting in vivo using phage display peptide libraries. Nature 380, 364–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cinti, S., Cigolini, M., Bosello, O. & Bjorntorp, P. A morphological study of the adipocyte precursor. J. Submicrosc Cytol. 16, 243–251 (1984).

    CAS  PubMed  Google Scholar 

  88. McLean, K. et al. Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J. Clin. Invest. 121, 3206–3219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kosteli, A. et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120, 3466–3479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ehses, J. A. et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56, 2356–2370 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Varma, V. et al. Muscle inflammatory response and insulin resistance: synergistic interaction between macrophages and fatty acids leads to impaired insulin action. Am. J. Physiol. Endocrinol. Metab. 296, E1300–1310 (2009).

    Article  CAS  Google Scholar 

  95. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nature Rev. Cancer 4, 71–78 (2004).

    Article  CAS  Google Scholar 

  96. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nature Rev. Cancer 8, 618–631 (2008).

    Article  CAS  Google Scholar 

  98. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ueno, T. et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res. 6, 3282–3289 (2000).

    CAS  PubMed  Google Scholar 

  100. Campbell, M. J. et al. Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res. Treat 128, 703–711 (2011).

    Article  PubMed  Google Scholar 

  101. Morris, P. G. et al. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev. Res. (Phila) 4, 1021–1029 (2011).

    Article  CAS  Google Scholar 

  102. Samuel, V. T., Petersen, K. F. & Shulman, G. I. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375, 2267–2277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Michels, K. B. et al. Type 2 diabetes and subsequent incidence of breast cancer in the Nurses' Health Study. Diabetes Care 26, 1752–1758 (2003).

    Article  PubMed  Google Scholar 

  104. Ma, J. et al. A prospective study of plasma C-peptide and colorectal cancer risk in men. J. Natl Cancer Inst. 96, 546–553 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Vigneri, P., Frasca, F., Sciacca, L., Pandini, G. & Vigneri, R. Diabetes and cancer. Endocr. Relat Cancer 16, 1103–1123 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Michaud, D. S. et al. Prediagnostic plasma C-peptide and pancreatic cancer risk in men and women. Cancer Epidemiol. Biomarkers Prev. 16, 2101–2109 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Ma, J. et al. Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis. Lancet Oncol. 9, 1039–1047 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Barone, B. B. et al. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA 300, 2754–2764 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brown, M. S. & Goldstein, J. L. Selective versus total insulin resistance: a pathogenic paradox. Cell. Metab. 7, 95–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Osborne, C. K., Bolan, G., Monaco, M. E. & Lippman, M. E. Hormone responsive human breast cancer in long-term tissue culture: effect of insulin. Proc. Natl Acad. Sci. USA 73, 4536–4540 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nagle, J. A., Ma, Z., Byrne, M. A., White, M. F. & Shaw, L. M. Involvement of insulin receptor substrate 2 in mammary tumor metastasis. Mol. Cell Biol. 24, 9726–9735 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nature Rev. Cancer 8, 915–928 (2008).

    Article  CAS  Google Scholar 

  113. Boni-Schnetzler, M., Schmid, C., Meier, P. J. & Froesch, E. R. Insulin regulates insulin-like growth factor I mRNA in rat hepatocytes. Am. J. Physiol. 260, E846–851 (1991).

    CAS  PubMed  Google Scholar 

  114. Zhang, L. et al. Gene expression profiles in normal and cancer cells. Science 276, 1268–1272 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Frystyk, J., Skjaerbaek, C., Vestbo, E., Fisker, S. & Orskov, H. Circulating levels of free insulin-like growth factors in obese subjects: the impact of type 2 diabetes. Diabetes Metab. Res. Rev. 15, 314–322 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Nunez, N. P. et al. Obesity accelerates mouse mammary tumor growth in the absence of ovarian hormones. Nutr. Cancer 60, 534–541 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Frystyk, J., Brick, D. J., Gerweck, A. V., Utz, A. L. & Miller, K. K. Bioactive insulin-like growth factor-I in obesity. J. Clin. Endocrinol. Metab. 94, 3093–3097 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Heald, A. H. et al. Close relation of fasting insulin-like growth factor binding protein-1 (IGFBP-1) with glucose tolerance and cardiovascular risk in two populations. Diabetologia 44, 333–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Buckbinder, L. et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377, 646–649 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. Kaaks, R. et al. Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women. J. Natl Cancer Inst. 92, 1592–1600 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Wolpin, B. M. et al. Insulin, the insulin-like growth factor axis, and mortality in patients with nonmetastatic colorectal cancer. J. Clin. Oncol. 27, 176–185 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hsieh, D., Hsieh, A., Stea, B. & Ellsworth, R. IGFBP2 promotes glioma tumor stem cell expansion and survival. Biochem. Biophys. Res. Commun. 397, 367–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Papa, V. et al. Elevated insulin receptor content in human breast cancer. J. Clin. Invest. 86, 1503–1510 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. McCampbell, A. S., Broaddus, R. R., Loose, D. S. & Davies, P. J. Overexpression of the insulin-like growth factor I receptor and activation of the AKT pathway in hyperplastic endometrium. Clin. Cancer Res. 12, 6373–6378 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Jiang, Y. et al. A high expression level of insulin-like growth factor I receptor is associated with increased expression of transcription factor Sp1 and regional lymph node metastasis of human gastric cancer. Clin. Exp. Metastasis 21, 755–764 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Weber, M. M. et al. Overexpression of the insulin-like growth factor I receptor in human colon carcinomas. Cancer 95, 2086–2095 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Engelman, J. A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature Rev. Cancer 9, 550–562 (2009).

    Article  CAS  Google Scholar 

  128. Schubbert, S., Shannon, K. & Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nature Rev. Cancer 7, 295–308 (2007).

    Article  CAS  Google Scholar 

  129. Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev. Mol. Cell Biol. 12, 21–35 (2011).

    Article  CAS  Google Scholar 

  130. Kalaany, N. Y. & Sabatini, D. M. Tumours with PI3K activation are resistant to dietary restriction. Nature 458, 725–731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bol., D. K., Kiguchi, K., Gimenez-Conti, I., Rupp, T. & DiGiovanni, J. Overexpression of insulin-like growth factor-1 induces hyperplasia, dermal abnormalities, and spontaneous tumor formation in transgenic mice. Oncogene 14, 1725–1734 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. DiGiovanni, J. et al. Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice. Proc. Natl Acad. Sci. USA 97, 3455–3460 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lopez, T. & Hanahan, D. Elevated levels of IGF-1 receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 1, 339–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Carboni, J. M. et al. Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res. 65, 3781–3787 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Moorehead, R. A., Sanchez, O. H., Baldwin, R. M. & Khokha, R. Transgenic overexpression of IGF-II induces spontaneous lung tumors: a model for human lung adenocarcinoma. Oncogene 22, 853–857 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Pravtcheva, D. D. & Wise, T. L. Metastasizing mammary carcinomas in H19 enhancers-Igf2 transgenic mice. J. Exp. Zool. 281, 43–57 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Jones, R. A. et al. Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene 26, 1636–1644 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Chan, J. M. et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279, 563–566 (1998).

    Article  CAS  PubMed  Google Scholar 

  139. Wu, Y. et al. Insulin-like growth factor-I regulates the liver microenvironment in obese mice and promotes liver metastasis. Cancer Res. 70, 57–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nguyen, P. L. et al. Fatty acid synthase polymorphisms, tumor expression, body mass index, prostate cancer risk, and survival. J. Clin. Oncol. 28, 3958–3964 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kuhajda, F. P. et al. Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc. Natl Acad. Sci. USA 91, 6379–6383 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Alli, P. M., Pinn, M. L., Jaffee, E. M., McFadden, J. M. & Kuhajda, F. P. Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N. transgenic mice. Oncogene 24, 39–46 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Kridel, S. J., Axelrod, F., Rozenkrantz, N. & Smith, J. W. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res. 64, 2070–2075 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Chakravarthy, M. V. et al. Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 138, 476–488 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Peters, J. M., Cattley, R. C. & Gonzalez, F. J. Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14, 643. Carcinogenesis 18, 2029–2033 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Reddy, J. K., Azarnoff, D. L. & Hignite, C. E. Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature 283, 397–398 (1980).

    Article  CAS  PubMed  Google Scholar 

  147. Gupta, R. A. et al. Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-delta accelerates intestinal adenoma growth. Nature Med. 10, 245–247 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Hollingshead, H. E. et al. Peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) ligands do not potentiate growth of human cancer cell lines. Carcinogenesis 28, 2641–2649 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Nomura, D. K. et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140, 49–61 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Robertson, R. P., Harmon, J., Tran, P. O. & Poitout, V. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53 Suppl 1, S119–124 (2004).

    Article  PubMed  Google Scholar 

  151. Elsner, M., Gehrmann, W. & Lenzen, S. Peroxisome-generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells. Diabetes 60, 200–208 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Moitra, J. et al. Life without white fat: a transgenic mouse. Genes Dev. 12, 3168–3181 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nunez, N. P. et al. Accelerated tumor formation in a fatless mouse with type 2 diabetes and inflammation. Cancer Res. 66, 5469–5476 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Fierz, Y., Novosyadlyy, R., Vijayakumar, A., Yakar, S. & LeRoith, D. Insulin-sensitizing therapy attenuates type 2 diabetes-mediated mammary tumor progression. Diabetes 59, 686–693 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Novosyadlyy, R. et al. Insulin-mediated acceleration of breast cancer development and progression in a nonobese model of type 2 diabetes. Cancer Res. 70, 741–751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Adams, T. D. et al. Long-term mortality after gastric bypass surgery. N. Engl. J. Med. 357, 753–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Adams, T. D. et al. Cancer incidence and mortality after gastric bypass surgery. Obesity (Silver Spring) 17, 796–802 (2009).

    Article  Google Scholar 

  158. Ostlund, M. P., Lu, Y. & Lagergren, J. Risk of obesity-related cancer after obesity surgery in a population-based cohort study. Ann. Surg. 252, 972–976 (2010).

    Article  PubMed  Google Scholar 

  159. Currie, C. J., Poole, C. D. & Gale, E. A. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 52, 1766–1777 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Jonasson, J. M. et al. Insulin glargine use and short-term incidence of malignancies-a population-based follow-up study in Sweden. Diabetologia 52, 1745–1754 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Bowker, S. L., Majumdar, S. R., Veugelers, P. & Johnson, J. A. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29, 254–258 (2006).

    Article  PubMed  Google Scholar 

  162. Erickson, K. et al. Clinically defined type 2 diabetes mellitus and prognosis in early-stage breast cancer. J. Clin. Oncol. 29, 54–60 (2011).

    Article  PubMed  Google Scholar 

  163. Colhoun, H. M. Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia 52, 1755–1765 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Hirsch, H. A., Iliopoulos, D., Tsichlis, P. N. & Struhl, K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 69, 7507–7511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Girnun, G. D. et al. Regression of drug-resistant lung cancer by the combination of rosiglitazone and carboplatin. Clin. Cancer Res. 14, 6478–6486 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mueller, E. et al. Terminal differentiation of human breast cancer through PPAR gamma. Mol. Cell 1, 465–470 (1998).

    Article  CAS  PubMed  Google Scholar 

  167. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kalender, A. et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell. Metab. 11, 390–401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Girnun, G. D. et al. Synergy between PPARgamma ligands and platinum-based drugs in cancer. Cancer Cell 11, 395–406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Govindarajan, R. et al. Thiazolidinediones and the risk of lung, prostate, and colon cancer in patients with diabetes. J. Clin. Oncol. 25, 1476–1481 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Kim, S. et al. Aspirin may be more effective in preventing colorectal adenomas in patients with higher BMI (United States). Cancer Causes Control 17, 1299–1304 (2006).

    Article  PubMed  Google Scholar 

  172. Roberts, D. L., Dive, C. & Renehan, A. G. Biological mechanisms linking obesity and cancer risk: new perspectives. Annu. Rev. Med. 61, 301–316 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Owing to space constraints, the authors were unable to cite a number of important studies that have contributed to knowledge of this area. The authors thank R. Gupta, S. Kleiner and other members of the Spiegelman laboratory for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce M. Spiegelman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Bruce M. Spiegelman's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khandekar, M., Cohen, P. & Spiegelman, B. Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 11, 886–895 (2011). https://doi.org/10.1038/nrc3174

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3174

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer