Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Immunity, inflammation and cancer: a leading role for adenosine

Key Points

  • Several lines of evidence highlight the importance of adenosine as a crucial regulatory autocrine and paracrine factor that accumulates in the neoplastic microenvironment.

  • The concentrations of adenosine, which is physiologically present at low levels in the interstitial fluids of unstressed tissues, can rapidly increase in response to pathological conditions, such as hypoxia, ischaemia, inflammation or trauma. After being released from the intracellular space into the extracellular space, adenosine functions as an 'alarm' or danger signal and, through the activation of specific receptors, it generates various cellular responses that aim to restore tissue homeostasis.

  • The persistence of increased adenosine levels beyond the acute injury phase can become detrimental to tissues because it can activate pathways that promote and maintain an unremitting wound-healing process. These pathways lead to fibrotic remodelling or trigger several immune and tissue reactions that promote neoplastic changes.

  • Extracellular adenosine, which is usually present at high concentrations in cancer tissues, is a crucial mediator in the alteration of immune cell functions in cancer. This is possibly because the tightly regulated adenosine receptor pathways of immune cells undergo substantial alterations in tumours, thereby switching the functions of these cells from immune surveillance and host defence to the promotion of cancer cell transformation and growth.

  • Beyond the task of providing an immune-tolerant tumour microenvironment by helping to determine the activity of immune and inflammatory cells, the adenosine system directly regulates cancer growth and metastatic dissemination through specific receptors that are expressed on cancer cells.

  • Although the strategy of counteracting the growth and progression of malignancies through the pharmacological modulation of adenosine receptors and/or metabolism has been shown to work in vitro and in animal models, the translation of these results into clinical practice will require a better understanding of how adenosine helps to determine the tumour milieu and the onset and progression of tumour growth in humans.

Abstract

Cancer is a complex disease that is dictated by both cancer cell-intrinsic and cell-extrinsic processes. Adenosine is an ancient extracellular signalling molecule that can regulate almost all aspects of tissue function. As such, several studies have recently highlighted a crucial role for adenosine signalling in regulating the various aspects of cell-intrinsic and cell-extrinsic processes of cancer development. This Review critically discusses the role of adenosine and its receptors in regulating the complex interplay among immune, inflammatory, endothelial and cancer cells during the course of neoplastic disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adenosine and adenosine receptors.
Figure 2: The adenosine pathway in the tumour microenvironment and tumour progression.
Figure 3: The role of the adenosine system in modulating the extrinsic and intrinsic apoptotic programme.
Figure 4: CD73-derived adenosine enhances tumour cell migration via A2B adenosine receptors.

Similar content being viewed by others

References

  1. Blay, J., White, T. D. & Hoskin, D. W. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res. 57, 2602–2605 (1997).

    CAS  PubMed  Google Scholar 

  2. Ohta, A. et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc. Natl Acad. Sci. USA 103, 13132–13137 (2006) This study shows that the A2A receptor protects cancerous tissues by inhibiting incoming antitumour T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hasko, G., Linden, J., Cronstein, B. & Pacher, P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nature Rev. Drug Discov. 7, 759–770 (2008). This is a comprehensive overview of the involvement of adenosine receptors in inflammatory and immune diseases. It covers aspects of cell biology, molecular biology and pharmacology.

    Article  CAS  Google Scholar 

  4. Antonioli, L. et al. Regulation of enteric functions by adenosine: pathophysiological and pharmacological implications. Pharmacol. Ther. 120, 233–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Longhi, M. S., Robson, S. C., Bernstein, S. H., Serra, S. & Deaglio, S. Biological functions of ecto-enzymes in regulating extracellular adenosine levels in neoplastic and inflammatory disease states. J. Mol. Med. (Berl.) 91, 165–172 (2013).

    Article  CAS  Google Scholar 

  6. Hasko, G. & Cronstein, B. N. Adenosine: an endogenous regulator of innate immunity. Trends Immunol. 25, 33–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Csoka, B. et al. Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function. FASEB J. 22, 3491–3499 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Himer, L. et al. Adenosine A2A receptor activation protects CD4+ T lymphocytes against activation-induced cell death. FASEB J. 24, 2631–2640 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chan, E. S. & Cronstein, B. N. Adenosine in fibrosis. Mod. Rheumatol 20, 114–122 (2010).

    Google Scholar 

  10. Karmouty-Quintana, H., Xia, Y. & Blackburn, M. R. Adenosine signaling during acute and chronic disease states. J. Mol. Med. (Berl.) 91, 173–181 (2013).

    Article  CAS  Google Scholar 

  11. Sitkovsky, M. V., Kjaergaard, J., Lukashev, D. & Ohta, A. Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin. Cancer Res. 14, 5947–5952 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Hasko, G. & Pacher, P. Regulation of macrophage function by adenosine. Arterioscler Thromb. Vasc. Biol. 32, 865–869 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ryzhov, S. et al. Host A(2B) adenosine receptors promote carcinoma growth. Neoplasia 10, 987–995 (2008). This study shows that tumour cells promote their growth by exploiting A2B adenosine receptor-dependent regulation of VEGF in host immune cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spychala, J. Tumor-promoting functions of adenosine. Pharmacol. Ther. 87, 161–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Linden, J. Adenosine metabolism and cancer. Focus on “Adenosine downregulates DPPIV on HT-29 colon cancer cells by stimulating protein tyrosine phosphatases and reducing ERK1/2 activity via a novel pathway”. Am. J. Physiol. Cell Physiol. 291, C405–C406 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Klinger, M., Freissmuth, M. & Nanoff, C. Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell Signal. 14, 99–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Hoskin, D. W., Mader, J. S., Furlong, S. J., Conrad, D. M. & Blay, J. Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (Review). Int. J. Oncol. 32, 527–535 (2008).

    CAS  PubMed  Google Scholar 

  18. da Silva, C. G., Jarzyna, R., Specht, A. & Kaczmarek, E. Extracellular nucleotides and adenosine independently activate AMP-activated protein kinase in endothelial cells: involvement of P2 receptors and adenosine transporters. Circ. Res. 98, e39–e47 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Boison, D. Adenosine kinase: exploitation for therapeutic gain. Pharmacol. Rev. 65, 906–943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mato, J. M., Martinez-Chantar, M. L. & Lu, S. C. Methionine metabolism and liver disease. Annu. Rev. Nutr. 28, 273–293 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Antonioli, L. et al. Adenosine deaminase in the modulation of immune system and its potential as a novel target for treatment of inflammatory disorders. Curr. Drug Targets 13, 842–862 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Antonioli, L., Pacher, P., Vizi, E. S. & Hasko, G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 19, 355–367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baldwin, S. A. et al. The equilibrative nucleoside transporter family, SLC29. Pflugers Arch. 447, 735–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Gray, J. H., Owen, R. P. & Giacomini, K. M. The concentrative nucleoside transporter family, SLC28. Pflugers Arch. 447, 728–734 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Li, X., Wu, Z., Fu, X. & Han, W. A microRNA component of the neoplastic microenvironment: microregulators with far-reaching impact. Biomed. Res. Int. 2013, 762183 (2013).

    PubMed  Google Scholar 

  26. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Yegutkin, G. G. et al. Altered purinergic signaling in CD73-deficient mice inhibits tumor progression. Eur. J. Immunol. 41, 1231–1241 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Clayton, A., Al-Taei, S., Webber, J., Mason, M. D. & Tabi, Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J. Immunol. 187, 676–683 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Merighi, S. et al. A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol. Ther. 100, 31–48 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Gessi, S., Merighi, S., Sacchetto, V., Simioni, C. & Borea, P. A. Adenosine receptors and cancer. Biochim. Biophys. Acta 1808, 1400–1412 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Junger, W. G. Immune cell regulation by autocrine purinergic signalling. Nature Rev. Immunol. 11, 201–212 (2011). This is a comprehensive review of the roles of autocrine purinergic signalling in the regulation of both innate and adaptive immune responses. This review also discusses the potential of targeting purinergic receptors to treat immune-mediated disease.

    Article  CAS  Google Scholar 

  32. Mantovani, A., Biswas, S. K., Galdiero, M. R., Sica, A. & Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229, 176–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Biswas, S. K., Sica, A. & Lewis, C. E. Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J. Immunol. 180, 2011–2017 (2008). This review discusses the evidence of the plasticity of macrophage functions, the specific signalling mechanisms that may be regulating this plasticity and the new targets for anticancer therapies that are highlighted by these findings.

    Article  CAS  PubMed  Google Scholar 

  34. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Sica, A., Schioppa, T., Mantovani, A. & Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur. J. Cancer 42, 717–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Sica, A. Role of tumour-associated macrophages in cancer-related inflammation. Exp. Oncol. 32, 153–158 (2010).

    CAS  PubMed  Google Scholar 

  37. Hasko, G. et al. Adenosine receptor agonists differentially regulate IL-10, TNF-α, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J. Immunol. 157, 4634–4640 (1996).

    CAS  PubMed  Google Scholar 

  38. Nemeth, Z. H. et al. Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. J. Immunol. 175, 8260–8270 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Nemeth, Z. H. et al. Adenosine A2A receptor inactivation increases survival in polymicrobial sepsis. J. Immunol. 176, 5616–5626 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Hasko, G. et al. Ecto-5′-nucleotidase (CD73) decreases mortality and organ injury in sepsis. J. Immunol. 187, 4256–4267 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Hasko, G. et al. Adenosine inhibits IL-12 and TNF-α production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J. 14, 2065–2074 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Csoka, B. et al. A2A adenosine receptors and C/EBPβ are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood 110, 2685–2695 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Csoka, B. et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J. 26, 376–386 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Leibovich, S. J. et al. Synergistic up-regulation of vascular endothelial growth factor expression in murine macrophages by adenosine A(2A) receptor agonists and endotoxin. Am. J. Pathol. 160, 2231–2244 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pinhal-Enfield, G. et al. An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors. Am. J. Pathol. 163, 711–721 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ernens, I. et al. Adenosine up-regulates vascular endothelial growth factor in human macrophages. Biochem. Biophys. Res. Commun. 392, 351–356 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. De Ponti, C. et al. Adenosine A2a receptor-mediated, normoxic induction of HIF-1 through PKC and PI-3K-dependent pathways in macrophages. J. Leukoc. Biol. 82, 392–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Ramanathan, M., Pinhal-Enfield, G., Hao, I. & Leibovich, S. J. Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in macrophages by adenosine A2A receptor agonists and endotoxin involves transcriptional regulation via the hypoxia response element in the VEGF promoter. Mol. Biol. Cell 18, 14–23 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Novitskiy, S. V. et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112, 1822–1831 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang, M. et al. HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol. Cell Biol. 88, 165–171 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Cekic, C. et al. Adenosine A2B receptor blockade slows growth of bladder and breast tumors. J. Immunol. 188, 198–205 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Umemura, N. et al. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J. Leukoc. Biol. 83, 1136–1144 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Ostrand-Rosenberg, S. & Sinha, P. Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol. 182, 4499–4506 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Ryzhov, S. et al. Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cells. J. Immunol. 187, 6120–6129 (2011). This study shows that the generation of adenosine by CD73 that is expressed at high levels on granulocytic MDSCs promotes their expansion and facilitates their immunosuppressive activity.

    Article  CAS  PubMed  Google Scholar 

  55. Crimeen-Irwin, B., Scalzo, K., Gloster, S., Mottram, P. L. & Plebanski, M. Failure of immune homeostasis — the consequences of under and over reactivity. Curr. Drug Targets Immune Endocr. Metabol. Disord. 5, 413–422 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Byrne, W. L., Mills, K. H., Lederer, J. A. & O'Sullivan, G. C. Targeting regulatory T cells in cancer. Cancer Res. 71, 6915–6920 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mandapathil, M. et al. Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J. Biol. Chem. 285, 7176–7186 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Schuler, P. J., Harasymczuk, M., Schilling, B., Lang, S. & Whiteside, T. L. Separation of human CD4+CD39+ T cells by magnetic beads reveals two phenotypically and functionally different subsets. J. Immunol. Methods 369, 59–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ernst, P. B., Garrison, J. C. & Thompson, L. F. Much ado about adenosine: adenosine synthesis and function in regulatory T cell biology. J. Immunol. 185, 1993–1998 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007). This study provides evidence that CD39 is a novel cell surface marker of FOXP3+ T Reg cells, and that the co-expression of CD39 and CD73 with the pericellular generation of adenosine represents a substantial functional component of the suppressive capabilities of T Reg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Regateiro, F. S., Cobbold, S. P. & Waldmann, H. CD73 and adenosine generation in the creation of regulatory microenvironments. Clin. Exp. Immunol. 171, 1–7 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hilchey, S. P. et al. Human follicular lymphoma CD39+-infiltrating T cells contribute to adenosine-mediated T cell hyporesponsiveness. J. Immunol. 183, 6157–6166 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Mandapathil, M. et al. Adenosine and prostaglandin E2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells. J. Biol. Chem. 285, 27571–27580 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mandapathil, M. et al. Increased ectonucleotidase expression and activity in regulatory T cells of patients with head and neck cancer. Clin. Cancer Res. 15, 6348–6357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sun, X. et al. CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology 139, 1030–1040 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Parodi, A. et al. CD39 is highly involved in mediating the suppression activity of tumor-infiltrating CD8+ T regulatory lymphocytes. Cancer Immunol. Immunother. 62, 851–862 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Stagg, J. & Smyth, M. J. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29, 5346–5358 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Bastid, J. et al. ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene 32, 1743–1751 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Burnstock, G. & Di Virgilio, F. Purinergic signalling and cancer. Purinerg. Signal http://dx.doi.org/10.1007/s11302-013-9372-5 (2013).

  72. Jin, D. et al. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res. 70, 2245–2255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stagg, J. et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc. Natl Acad. Sci. USA 107, 1547–1552 (2010). This study identifies tumour-derived CD73 as part of a mechanism of tumour immune escape and tumour metastasis, and also provides proof of concept that targeted therapy against CD73 can trigger adaptive antitumour immunity and inhibit the metastasis of breast cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Loi, S. et al. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc. Natl Acad. Sci. USA 110, 11091–11096 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang, L. et al. CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J. Clin. Invest. 121, 2371–2382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stagg, J. et al. CD73-deficient mice are resistant to carcinogenesis. Cancer Res. 72, 2190–2196 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Serra, S. et al. CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death. Blood 118, 6141–6152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Airas, L. et al. CD73 is involved in lymphocyte binding to the endothelium: characterization of lymphocyte-vascular adhesion protein 2 identifies it as CD73. J. Exp. Med. 182, 1603–1608 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Airas, L., Niemela, J. & Jalkanen, S. CD73 engagement promotes lymphocyte binding to endothelial cells via a lymphocyte function-associated antigen-1-dependent mechanism. J. Immunol. 165, 5411–5417 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Stagg, J. et al. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res. 71, 2892–2900 (2011). This study provides evidence that CD73 expression on non-haematopoietic and haematopoietic cells restricts CD8+ T cell-mediated antitumour immunity. This study also highlights the relevance of CD73 that is expressed on T Reg cells for T Reg cell-mediated tumour growth.

    Article  CAS  PubMed  Google Scholar 

  81. Chalmin, F. et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 36, 362–373 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Langers, I., Renoux, V. M., Thiry, M., Delvenne, P. & Jacobs, N. Natural killer cells: role in local tumor growth and metastasis. Biologics 6, 73–82 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Williams, B. A., Blay, J. & Hoskin, D. W. 2-chloroadenosine stimulates granule exocytosis from mouse natural killer cells: evidence for signal transduction through a novel extracellular receptor. Exp. Cell Res. 233, 187–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. MacKenzie, W. M., Hoskin, D. W. & Blay, J. Adenosine inhibits the adhesion of anti-CD3-activated killer lymphocytes to adenocarcinoma cells through an A3 receptor. Cancer Res. 54, 3521–3526 (1994).

    CAS  PubMed  Google Scholar 

  85. Raskovalova, T. et al. Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells. J. Immunol. 175, 4383–4391 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Lokshin, A. et al. Adenosine-mediated inhibition of the cytotoxic activity and cytokine production by activated natural killer cells. Cancer Res. 66, 7758–7765 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Raskovalova, T., Lokshin, A., Huang, X., Jackson, E. K. & Gorelik, E. Adenosine-mediated inhibition of cytotoxic activity and cytokine production by IL-2/NKp46-activated NK cells: involvement of protein kinase A isozyme I (PKA I). Immunol. Res. 36, 91–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Beavis, P. A. et al. Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc. Natl Acad. Sci. USA 110, 14711–14716 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ribas, A. et al. Tremelimumab (CP-675,206), a cytotoxic T lymphocyte associated antigen 4 blocking monoclonal antibody in clinical development for patients with cancer. Oncologist 12, 873–883 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Allard, B., Pommey, S., Smyth, M. J. & Stagg, J. Targeting CD73 enhances the anti-tumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin. Cancer Res. 19, 5626–5635 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Chan, E. S. & Cronstein, B. N. Methotrexate--how does it really work? Nature Rev. Rheumatol 6, 175–178 (2010).

    Article  CAS  Google Scholar 

  93. Long, J. S. et al. Extracellular adenosine sensing — a metabolic cell death priming mechanism downstream of p53. Mol. Cell 50, 394–406 (2013). This study shows that A2B has a role in the cell death priming mechanism downstream of p53 that is triggered in response to the cell alterations that occur during exposure to chemotherapeutic drugs.

    Article  CAS  PubMed  Google Scholar 

  94. Aird, W. C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ. Res. 100, 158–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nature Rev. Immunol. 7, 803–815 (2007).

    Article  CAS  Google Scholar 

  96. Eltzschig, H. K. et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J. Exp. Med. 198, 783–796 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Weis, S. M. & Cheresh, D. A. Tumor angiogenesis: molecular pathways and therapeutic targets. Nature Med. 17, 1359–1370 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, L. et al. Ecto-5′-nucleotidase (CD73) promotes tumor angiogenesis. Clin. Exp. Metastasis. 30, 671–680 (2013). This study provides evidence that CD73 can promote endothelial cells to form new vessels in cancer, which facilitates tumour growth and metastasis.

    Article  CAS  PubMed  Google Scholar 

  99. Zhou, X. et al. Effects of ecto-5′-nucleotidase on human breast cancer cell growth in vitro and in vivo. Oncol. Rep. 17, 1341–1346 (2007).

    CAS  PubMed  Google Scholar 

  100. Feng, L. et al. Vascular CD39/ENTPD1 directly promotes tumor cell growth by scavenging extracellular adenosine triphosphate. Neoplasia 13, 206–216 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jackson, S. W. et al. Disordered purinergic signaling inhibits pathological angiogenesis in cd39/Entpd1-null mice. Am. J. Pathol. 171, 1395–1404 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hasko, G., Csoka, B., Nemeth, Z. H., Vizi, E. S. & Pacher, P. A(2B) adenosine receptors in immunity and inflammation. Trends Immunol. 30, 263–270 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, D. et al. The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J. Clin. Invest. 116, 1913–1923 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Eckle, T. et al. A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 111, 2024–2035 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ahmad, A. et al. Adenosine A2A receptor is a unique angiogenic target of HIF-2α in pulmonary endothelial cells. Proc. Natl Acad. Sci. USA 106, 10684–10689 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Merighi, S. et al. Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1α, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells. Mol. Pharmacol. 72, 395–406 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Merighi, S. et al. A(2B) and A(3) adenosine receptors modulate vascular endothelial growth factor and interleukin-8 expression in human melanoma cells treated with etoposide and doxorubicin. Neoplasia. 11, 1064–1073 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Merighi, S. et al. Adenosine modulates vascular endothelial growth factor expression via hypoxia-inducible factor-1 in human glioblastoma cells. Biochem. Pharmacol. 72, 19–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Merighi, S. et al. A3 adenosine receptors modulate hypoxia-inducible factor-1α expression in human A375 melanoma cells. Neoplasia. 7, 894–903 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Barcz, E., Sommer, E., Janik, P., Marianowski, L. & Skopinska-Rozewska, E. Adenosine receptor antagonism causes inhibition of angiogenic activity of human ovarian cancer cells. Oncol. Rep. 7, 1285–1291 (2000).

    CAS  PubMed  Google Scholar 

  111. Menon, L. G., Ingle, A. D. & Gude, R. P. Tumor regression of B16F10 melanoma in vivo by prevention of neovascularization: study on theophylline. Cancer Biother. Radiopharm. 17, 213–217 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Zhi, X. et al. RNA interference of ecto-5′-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion. Clin. Exp. Metastasis 24, 439–448 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Braganhol, E., Tamajusuku, A. S., Bernardi, A., Wink, M. R. & Battastini, A. M. Ecto-5′-nucleotidase/CD73 inhibition by quercetin in the human U138MG glioma cell line. Biochim. Biophys. Acta 1770, 1352–1359 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Bavaresco, L. et al. The role of ecto-5′-nucleotidase/CD73 in glioma cell line proliferation. Mol. Cell. Biochem. 319, 61–68 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Tan, E. Y., Richard, C. L., Zhang, H., Hoskin, D. W. & Blay, J. Adenosine downregulates DPPIV on HT-29 colon cancer cells by stimulating protein tyrosine phosphatase(s) and reducing ERK1/2 activity via a novel pathway. Am. J. Physiol. Cell Physiol. 291, C433–C444 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Tan, E. Y., Mujoomdar, M. & Blay, J. Adenosine down-regulates the surface expression of dipeptidyl peptidase IV on HT-29 human colorectal carcinoma cells: implications for cancer cell behavior. Am. J. Pathol. 165, 319–330 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pennycooke, M., Chaudary, N., Shuralyova, I., Zhang, Y. & Coe, I. R. Differential expression of human nucleoside transporters in normal and tumor tissue. Biochem. Biophys. Res. Commun. 280, 951–959 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Damaraju, V. L. et al. Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene 22, 7524–7536 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Galmarini, C. M., Mackey, J. R. & Dumontet, C. Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 15, 875–890 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Ciardiello, F. & Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med. 358, 1160–1174 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Sadikovic, B., Al-Romaih, K., Squire, J. A. & Zielenska, M. Cause and consequences of genetic and epigenetic alterations in human cancer. Curr. Genom. 9, 394–408 (2008).

    Article  CAS  Google Scholar 

  122. Johnson, D. G. & Walker, C. L. Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol. Toxicol. 39, 295–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Ohana, G., Bar-Yehuda, S., Barer, F. & Fishman, P. Differential effect of adenosine on tumor and normal cell growth: focus on the A3 adenosine receptor. J. Cell. Physiol. 186, 19–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Mirza, A. et al. RNA interference targeting of A1 receptor-overexpressing breast carcinoma cells leads to diminished rates of cell proliferation and induction of apoptosis. Cancer Biol. Ther. 4, 1355–1360 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Lin, Z. et al. Adenosine A1 receptor, a target and regulator of estrogen receptor-α action, mediates the proliferative effects of estradiol in breast cancer. Oncogene 29, 1114–1122 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Etique, N., Grillier-Vuissoz, I., Lecomte, J. & Flament, S. Crosstalk between adenosine receptor (A2A isoform) and ERα mediates ethanol action in MCF-7 breast cancer cells. Oncol. Rep. 21, 977–981 (2009).

    CAS  PubMed  Google Scholar 

  127. Ma, D. F. et al. Hypoxia-inducible adenosine A2B receptor modulates proliferation of colon carcinoma cells. Hum. Pathol. 41, 1550–1557 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Wei, Q., Costanzi, S., Balasubramanian, R., Gao, Z. G. & Jacobson, K. A. A2B adenosine receptor blockade inhibits growth of prostate cancer cells. Purinergic Signal. 9, 271–280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Panjehpour, M. & Karami-Tehrani, F. An adenosine analog (IB-MECA) inhibits anchorage-dependent cell growth of various human breast cancer cell lines. Int. J. Biochem. Cell Biol. 36, 1502–1509 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Merighi, S. et al. Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J. Invest. Dermatol. 119, 923–933 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Madi, L. et al. A3 adenosine receptor activation in melanoma cells: association between receptor fate and tumor growth inhibition. J. Biol. Chem. 278, 42121–42130 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Merighi, S. et al. A3 adenosine receptor activation inhibits cell proliferation via phosphatidylinositol 3-kinase/Akt-dependent inhibition of the extracellular signal-regulated kinase 1/2 phosphorylation in A375 human melanoma cells. J. Biol. Chem. 280, 19516–19526 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Fishman, P. et al. An agonist to the A3 adenosine receptor inhibits colon carcinoma growth in mice via modulation of GSK-3 β and NF-κ B. Oncogene 23, 2465–2471 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Fishman, P. et al. Adenosine acts as an inhibitor of lymphoma cell growth: a major role for the A3 adenosine receptor. Eur. J. Cancer 36, 1452–1458 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Ohana, G. et al. Inhibition of primary colon carcinoma growth and liver metastasis by the A3 adenosine receptor agonist CF101. Br. J. Cancer 89, 1552–1558 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Panjehpour, M. & Karami-Tehrani, F. Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors. Oncol. Res. 16, 575–585 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Bar-Yehuda, S., Barer, F., Volfsson, L. & Fishman, P. Resistance of muscle to tumor metastases: a role for a3 adenosine receptor agonists. Neoplasia 3, 125–131 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fishman, P. et al. The A3 adenosine receptor as a new target for cancer therapy and chemoprotection. Exp. Cell Res. 269, 230–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Aghaei, M., Panjehpour, M., Karami-Tehrani, F. & Salami, S. Molecular mechanisms of A3 adenosine receptor-induced G1 cell cycle arrest and apoptosis in androgen-dependent and independent prostate cancer cell lines: involvement of intrinsic pathway. J. Cancer Res. Clin. Oncol. 137, 1511–1523 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Fishman, P. et al. Evidence for involvement of Wnt signaling pathway in IB-MECA mediated suppression of melanoma cells. Oncogene 21, 4060–4064 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Lu, J., Pierron, A. & Ravid, K. An adenosine analogue, IB-MECA, down-regulates estrogen receptor α and suppresses human breast cancer cell proliferation. Cancer Res. 63, 6413–6423 (2003).

    CAS  PubMed  Google Scholar 

  142. Chung, H. et al. The antitumor effect of LJ-529, a novel agonist to A3 adenosine receptor, in both estrogen receptor-positive and estrogen receptor-negative human breast cancers. Mol. Cancer Ther. 5, 685–692 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Morello, S. et al. Cl-IB-MECA inhibits human thyroid cancer cell proliferation independently of A3 adenosine receptor activation. Cancer Biol. Ther. 7, 278–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Melet, A. et al. Apoptotic pathways in tumor progression and therapy. Adv. Exp. Med. Biol. 615, 47–79 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Rev. Mol. Cell Biol. 11, 621–632 (2010).

    Article  CAS  Google Scholar 

  147. Wong, R. S. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30, 87 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yang, D. et al. Tuning of apoptosis-mediator gene transcription in HepG2 human hepatoma cells through an adenosine signal. Cancer Lett. 291, 225–229 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Saito, M., Yaguchi, T., Yasuda, Y., Nakano, T. & Nishizaki, T. Adenosine suppresses CW2 human colonic cancer growth by inducing apoptosis via A1 adenosine receptors. Cancer Lett. 290, 211–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Wen, L. T. & Knowles, A. F. Extracellular ATP and adenosine induce cell apoptosis of human hepatoma Li-7A cells via the A3 adenosine receptor. Br. J. Pharmacol. 140, 1009–1018 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lee, E. J. et al. A novel adenosine analog, thio-Cl-IB-MECA, induces G0/G1 cell cycle arrest and apoptosis in human promyelocytic leukemia HL-60 cells. Biochem. Pharmacol. 70, 918–924 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Kim, S. G. et al. p53-Independent induction of Fas and apoptosis in leukemic cells by an adenosine derivative, Cl-IB-MECA. Biochem. Pharmacol. 63, 871–880 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mlejnek, P., Dolezel, P. & Kosztyu, P. P-glycoprotein mediates resistance to A3 adenosine receptor agonist 2-chloro-N6-(3-iodobenzyl)-adenosine-5′-n-methyluronamide in human leukemia cells. J. Cell. Physiol. 227, 676–685 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Cohen, S. et al. CF102 an A3 adenosine receptor agonist mediates anti-tumor and anti-inflammatory effects in the liver. J. Cell. Physiol. 226, 2438–2447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bar-Yehuda, S. et al. The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-κB signal transduction pathways. Int. J. Oncol. 33, 287–295 (2008).

    CAS  PubMed  Google Scholar 

  156. Morello, S. et al. Cl-IB-MECA enhances TRAIL-induced apoptosis via the modulation of NF-κB signalling pathway in thyroid cancer cells. J. Cell. Physiol. 221, 378–386 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Yasuda, Y., Saito, M., Yamamura, T., Yaguchi, T. & Nishizaki, T. Extracellular adenosine induces apoptosis in Caco-2 human colonic cancer cells by activating caspase-9/-3 via A(2a) adenosine receptors. J. Gastroenterol. 44, 56–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Tamura, K. et al. A(2a) adenosine receptor mediates HepG2 cell apoptosis by downregulating Bcl-XL expression and upregulating Bid expression. J. Cell Biochem. 113, 1766–1775 (2012).

    CAS  PubMed  Google Scholar 

  159. Otsuki, T. et al. A3 adenosine receptor-mediated p53-dependent apoptosis in Lu-65 human lung cancer cells. Cell Physiol. Biochem. 30, 210–220 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Aghaei, M., Karami-Tehrani, F., Panjehpour, M., Salami, S. & Fallahian, F. Adenosine induces cell-cycle arrest and apoptosis in androgen-dependent and -independent prostate cancer cell lines, LNcap-FGC-10, DU-145, and PC3. Prostate 72, 361–375 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Yang, D., Yaguchi, T., Yamamoto, H. & Nishizaki, T. Intracellularly transported adenosine induces apoptosis in HuH-7 human hepatoma cells by downregulating c-FLIP expression causing caspase-3/-8 activation. Biochem. Pharmacol. 73, 1665–1675 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Yang, D., Yaguchi, T., Nakano, T. & Nishizaki, T. Adenosine-induced caspase-3 activation by tuning Bcl-XL/DIABLO/IAP expression in HuH-7 human hepatoma cells. Cell Biol. Toxicol. 26, 319–330 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Nogi, Y. et al. AMP converted from intracellularly transported adenosine upregulates p53 expression to induce malignant pleural mesothelioma cell apoptosis. Cell Physiol. Biochem. 30, 61–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Yang, D., Yaguchi, T., Nakano, T. & Nishizaki, T. Adenosine activates AMPK to phosphorylate Bcl-XL responsible for mitochondrial damage and DIABLO release in HuH-7 cells. Cell Physiol. Biochem. 27, 71–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Sai, K. et al. A(1) adenosine receptor signal and AMPK involving caspase-9/-3 activation are responsible for adenosine-induced RCR-1 astrocytoma cell death. Neurotoxicology 27, 458–467 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Broker, L. E., Kruyt, F. A. & Giaccone, G. Cell death independent of caspases: a review. Clin. Cancer Res. 11, 3155–3162 (2005).

    Article  PubMed  Google Scholar 

  167. Cande, C., Cecconi, F., Dessen, P. & Kroemer, G. Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J. Cell Sci. 115, 4727–4734 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Kanno, T., Gotoh, A., Fujita, Y., Nakano, T. & Nishizaki, T. A(3) adenosine receptor mediates apoptosis in 5637 human bladder cancer cells by Gq protein/PKC-dependent AIF upregulation. Cell Physiol. Biochem. 30, 1159–1168 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Yang, D. et al. AMID mediates adenosine-induced caspase-independent HuH-7 cell apoptosis. Cell Physiol. Biochem. 27, 37–44 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nagaya, H., Gotoh, A., Kanno, T. & Nishizaki, T. A3 adenosine receptor mediates apoptosis in in vitro RCC4-VHL human renal cancer cells by up-regulating AMID expression. J. Urol. 189, 321–328 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Kanno, T., Nakano, T., Fujita, Y., Gotoh, A. & Nishizaki, T. Adenosine induces apoptosis in SBC-3 human lung cancer cells through A(3) adenosine receptor-dependent AMID upregulation. Cell Physiol. Biochem. 30, 666–677 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Wu, M., Xu, L. G., Li, X., Zhai, Z. & Shu, H. B. AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J. Biol. Chem. 277, 25617–25623 (2002).

    Article  CAS  PubMed  Google Scholar 

  173. Tsuchiya, A. et al. Intracellularly transported adenosine induces apoptosis in [corrected] MCF-7 human breast cancer cells by accumulating AMID in the nucleus. Cancer Lett. 321, 65–72 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Chiang, A. C. & Massague, J. Molecular basis of metastasis. N. Engl. J. Med. 359, 2814–2823 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Said, N. & Theodorescu, D. Permissive role of endothelin receptors in tumor metastasis. Life Sci. 91, 522–527 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Spano, D., Heck, C., De Antonellis, P., Christofori, G. & Zollo, M. Molecular networks that regulate cancer metastasis. Semin. Cancer Biol. 22, 234–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Kunzli, B. M. et al. Impact of CD39 and purinergic signalling on the growth and metastasis of colorectal cancer. Purinerg. Signal 7, 231–241 (2011).

    Article  CAS  Google Scholar 

  178. Zhou, P. et al. Overexpression of Ecto-5′-nucleotidase (CD73) promotes T-47D human breast cancer cells invasion and adhesion to extracellular matrix. Cancer Biol. Ther. 6, 426–431 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Wang, L. et al. Ecto-5′-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. J. Cancer Res. Clin. Oncol. 134, 365–372 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Cappellari, A. R. et al. Characterization of ectonucleotidases in human medulloblastoma cell lines: ecto-5′NT/CD73 in metastasis as potential prognostic factor. PLoS ONE 7, e47468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lee, H., Lin, E. C., Liu, L. & Smith, J. W. Gene expression profiling of tumor xenografts: in vivo analysis of organ-specific metastasis. Int. J. Cancer 107, 528–534 (2003).

    Article  CAS  PubMed  Google Scholar 

  182. Desmet, C. J. et al. Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc. Natl Acad. Sci. USA 110, 5139–5144 (2013). This study shows that the A2B receptor is a target of the metastasis-inducing transcription factor FRA1 in breast cancer cells and that the pharmacological modulation of the A2B receptor subtype is a viable way to interfere with metastatic breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ntantie, E. et al. An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci. Signal. 6, ra39 (2013). This study provides evidence that A2B receptors can suppress the prenylation of the small GTPase RAP1, thereby allowing reduced formation and maintenance of cell adherens junctions, reduced cell–cell adhesion and increased cell scattering.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Alderton, G. K. Metastasis. Exosomes drive premetastatic niche formation. Nature Rev. Cancer 12, 447 (2012).

    Article  CAS  Google Scholar 

  185. Trinchieri, G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu. Rev. Immunol. 30, 677–706 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  PubMed  Google Scholar 

  187. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kamp, D. W., Shacter, E. & Weitzman, S. A. Chronic inflammation and cancer: the role of the mitochondria. Oncology (Williston Park) 25, 400–410, 413 (2011).

    Google Scholar 

  189. Bhandari, A. & Crowe, S. E. Helicobacter pylori in gastric malignancies. Curr. Gastroenterol. Rep. 14, 489–496 (2012).

    Article  PubMed  Google Scholar 

  190. Arzumanyan, A., Reis, H. M. & Feitelson, M. A. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nature Rev. Cancer 13, 123–135 (2013).

    Article  CAS  Google Scholar 

  191. Munoz, N. Human papillomavirus and cancer: the epidemiological evidence. J. Clin. Virol. 19, 1–5 (2000).

    Article  CAS  PubMed  Google Scholar 

  192. Kemeny, L., Gyulai, R., Kiss, M., Nagy, F. & Dobozy, A. Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8: a new virus in human pathology. J. Am. Acad. Dermatol. 37, 107–113 (1997).

    Article  CAS  PubMed  Google Scholar 

  193. Hartnett, L. & Egan, L. J. Inflammation, DNA methylation and colitis-associated cancer. Carcinogenesis. 33, 723–731 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. Houghton, A. M. Mechanistic links between COPD and lung cancer. Nature Rev. Cancer. 13, 233–245 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. De Marzo, A. M. et al. Inflammation in prostate carcinogenesis. Nature Rev. Cancer. 7, 256–269 (2007).

    Article  CAS  Google Scholar 

  196. Coussens, L. M., Zitvogel, L. & Palucka, A. K. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339, 286–291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  198. Shacter, E. & Weitzman, S. A. Chronic inflammation and cancer. Oncology (Williston Park) 16, 217–226, 229; discussion 230–232 (2002).

    Google Scholar 

  199. Faure, M., Voyno-Yasenetskaya, T. A. & Bourne, H. R. cAMP and βγ subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J. Biol. Chem. 269, 7851–7854 (1994).

    CAS  PubMed  Google Scholar 

  200. Dickenson, J. M. & Hill, S. J. Involvement of G-protein betagamma subunits in coupling the adenosine A1 receptor to phospholipase C in transfected CHO cells. Eur. J. Pharmacol. 355, 85–93 (1998).

    Article  CAS  PubMed  Google Scholar 

  201. Schulte, G. & Fredholm, B. B. Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol. Pharmacol. 58, 477–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  202. Seidel, M. G., Klinger, M., Freissmuth, M. & Holler, C. Activation of mitogen-activated protein kinase by the A(2A)-adenosine receptor via a rap1-dependent and via a p21(ras)-dependent pathway. J. Biol. Chem. 274, 25833–25841 (1999).

    Article  CAS  PubMed  Google Scholar 

  203. Klinger, M., Kudlacek, O., Seidel, M. G., Freissmuth, M. & Sexl, V. MAP kinase stimulation by cAMP does not require RAP1 but SRC family kinases. J. Biol. Chem. 277, 32490–32497 (2002).

    Article  CAS  PubMed  Google Scholar 

  204. Sexl, V. et al. Stimulation of the mitogen-activated protein kinase via the A2A-adenosine receptor in primary human endothelial cells. J. Biol. Chem. 272, 5792–5799 (1997).

    Article  CAS  PubMed  Google Scholar 

  205. Schulte, G. & Fredholm, B. B. Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal. 15, 813–827 (2003).

    Article  CAS  PubMed  Google Scholar 

  206. Schulte, G. & Fredholm, B. B. The Gs-coupled adenosine A(2B) receptor recruits divergent pathways to regulate ERK1/2 and p38. Exp. Cell Res. 290, 168–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  207. Feoktistov, I., Goldstein, A. E. & Biaggioni, I. Role of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinase kinase in adenosine A2B receptor-mediated interleukin-8 production in human mast cells. Mol. Pharmacol. 55, 726–734 (1999).

    CAS  PubMed  Google Scholar 

  208. Koscso, B. et al. Adenosine augments IL-10 production by microglial cells through an A2B adenosine receptor-mediated process. J. Immunol. 188, 445–453 (2012).

    Article  CAS  PubMed  Google Scholar 

  209. Graham, S., Combes, P., Crumiere, M., Klotz, K. N. & Dickenson, J. M. Regulation of p42/p44 mitogen-activated protein kinase by the human adenosine A3 receptor in transfected CHO cells. Eur. J. Pharmacol. 420, 19–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  210. Trincavelli, M. L. et al. Involvement of mitogen protein kinase cascade in agonist-mediated human A(3) adenosine receptor regulation. Biochim. Biophys. Acta. 1591, 55–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  211. Mediavilla-Varela, M. et al. Antagonism of adenosine A2A receptor expressed by lung adenocarcinoma tumor cells and cancer associated fibroblasts inhibits their growth. Cancer Biol. Ther. 14, 860–868 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Jajoo, S., Mukherjea, D., Watabe, K. & Ramkumar, V. Adenosine A(3) receptor suppresses prostate cancer metastasis by inhibiting NADPH oxidase activity. Neoplasia 11, 1132–1145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Rust, S. et al. Combining phenotypic and proteomic approaches to identify membrane targets in a 'triple negative' breast cancer cell type. Mol. Cancer 12, 11 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Allard, B. et al. Anti-CD73 therapy impairs tumor angiogenesis. Int. J. Cancer. http://dx.doi.org/10.1002/ijc.28456 (2013).

  215. Forte, G. et al. Inhibition of CD73 improves B cell-mediated anti-tumor immunity in a mouse model of melanoma. J. Immunol. 189, 2226–2233 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grant R01GM66189 (to G.H.), Hungarian Scientific Research Fund grants (Országos Tudományos Kutatási Alapprogramok (OTKA)) CK 78275 (to G.H.) and K 109178 (to G.H.), the Intramural Research Program of the NIH, the National Institute on Alcohol Abuse and Alcoholism (to P.P.), the Nexus award “Marcello Tonini” (to L.A.) and by the Inflammatory Bowel Disease (IBD) Research Foundation (mini grant 2012) (to L.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Haskó.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

T helper 1 cell

(TH1 cell). A CD4+ T helper cell that produces interferon-γ, interleukin-2 and tumour necrosis factor. It also promotes cell-mediated immunity and phagocyte-dependent inflammation.

CD39

(also known as ecto-nucleoside triphosphate diphosphohydrolase 1, E-NTPDase1). A membrane-bound enzyme that catalyses the conversion of extracellular ATP and/or ADP to AMP.

CD73

(also known as ecto-5′-nucleotidase, Ecto5′NTase). A membrane-bound enzyme that catalyses the conversion of extracellular AMP to adenosine.

Regulatory T cells

(TReg cells). A subpopulation of immune T cells that have a crucial role in the maintenance of immunological unresponsiveness to self antigens and in the suppression of abnormal immune responses that are deleterious to the host.

Adenosine deaminase

An enzyme that is required for the conversion of adenosine to inosine.

Myeloid-derived suppressor cells

(MDSCs). A heterogeneous population of cells that increase in number during cancer, inflammation and infection, and are able to potently suppress T cell responses.

Natural killer cell

(NK cell). An effector lymphocyte of the innate immune system that controls several types of tumours and microbial infections by limiting their spread.

TH17 cells

These cells, which belong to a recently identified T helper cell subset, mediate host defence mechanisms in response to various infections. These cells are also involved in the pathogenesis of several autoimmune diseases and cancer.

Prenylation

A class of lipid modification that involves covalent addition of either farnesyl or geranylgeranyl isoprenoids to conserved cysteine residues that occur at, or near, the carboxyl terminus of proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonioli, L., Blandizzi, C., Pacher, P. et al. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 13, 842–857 (2013). https://doi.org/10.1038/nrc3613

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3613

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer