Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The retinoblastoma tumour suppressor in development and cancer

Key Points

  • The retinoblastoma gene (RB) was the first tumour suppressor to be cloned, but the mechanism behind its role in tumour suppression remains unclear.

  • The retinoblastoma protein (RB) has been implicated in many cellular processes, such as regulation of the cell cycle, DNA-damage responses, DNA repair, DNA replication, protection against apoptosis, and differentiation, all of which could contribute to its function as a tumour suppressor.

  • RB is closely related to two genes in mice and humans (p107 and 130, which are not commonly mutated in tumours), which have been found to have partially redundant as well as opposing functions in genetic experiments in mice. Future studies are required to identify the similarities and differences between these proteins, which might explain the seemingly unique role of RB as a tumour suppressor.

  • As retinoblastomas do not arise as a consequence of Rb loss in mice, this model system is not ideal for studying this disease. However, this model system has provided information regarding the role of RB, p107 and p130 in development and tumorigenesis. Further experiments with conditional knockouts, as well as inter-crossing experiments, will provide a better insight into their roles in biological processes.

  • Biochemical experiments have provided information regarding the nature of various protein interactions with RB. Considering that there are more than 100 reported RB-binding proteins, much detailed structure/function mapping is required to clarify the biological relevance of all these interactions.

  • RB has also been associated with tumour growth, based on studies in which a constitutively active Rb allele gives rise to dysplasia in transgenic mice.

Abstract

Since its discovery, the retinoblastoma (RB) tumour-suppressor protein has been a focal point of cancer research. Accumulating evidence indicates a complex role for RB in cell proliferation, differentiation and survival. To further complicate matters, proteins that are related to RB have redundant as well as antagonistic functions. Recent studies of knockout mice and cells that lack one or more of these proteins have begun to clarify their various context-specific functions and the unique activity of this tumour suppressor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The RB pathway and the many potential functions of RB.
Figure 2: RB and E2F function.
Figure 3: The 'pocket protein' family.

Similar content being viewed by others

References

  1. Hungerford, D. A. Some early studies of human chromosomes, 1879–1955. Cytogenet. Cell Genet 20, 1–11 (1978).

    Article  Google Scholar 

  2. Knudson, A. G. Jr. Retinoblastoma: a prototypic hereditary neoplasm. Semin. Oncol 5, 57–60 (1978)

    PubMed  Google Scholar 

  3. Friend, S. H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, W. H. et al. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235, 1394–1399 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Fung, Y. K. et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science 236, 1657–1661 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Weinberg, R. A. Tumor suppressor genes. Science 254, 1138–1146 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Whyte, P. et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334, 124–129 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. DeCaprio, J. A. et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54, 275–283 (1988). References 7 and 8 provided the first description of RB interaction with a viral oncogene – adenovirus E1A and SV40 T Ag; these findings laid the foundation for studies of RB's role in cell-cycle control.

    Article  CAS  PubMed  Google Scholar 

  9. Munger, K. et al. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8, 4099–4105 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dyson, N. & Harlow, E., eds. (1992). Adenovirus E1A targets key regulators of cell proliferation. (Imperial Cancer Research Fund).

    Google Scholar 

  11. Qin, X. Q., Chittenden, T., Livingston, D. M. & Kaelin, W. G. Jr. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 6, 953–964 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Huang, H. J. et al. Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242, 1563–1566 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Goodrich, D. W., Wang, N. P., Qian, Y. -W., Lee, E. Y. -H. P. & Lee, W. -H. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67, 293–302 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Herrera, R. E. et al. Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts. Mol. Cell. Biol. 16, 2402–2407 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hurford, R., Cobrinik, D., Lee, M. -H. & Dyson, N. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev. 11, 1447–1463 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Classon, M. et al. Combinatorial roles for pRB, p107 and p130 in E2F-mediated cell cycle control. Proc. Natl Acad. Sci. USA 97, 10820–10825 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Helin, K. et al. A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 70, 337–350 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Kaelin, W. G. Jr et al. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70, 351–364 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Shan, B., Durfee, T. & Lee, W. -H. Disruption of RB/E2F-1 interaction by single point mutations in E2F-1 enhances S-phase entry and apoptosis. Proc. Natl Acad. Sci. USA 93, 679–684 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nevins, J. R. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258, 424–429 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nature Rev. Mol. Cell Biol. 3, 11–20 (2002).

    Article  CAS  Google Scholar 

  23. Fattaey, A., Helin, K. & Harlow, E. Transcriptional inhibition by the retinoblastoma protein. – Phil. Trans. R. Soc. Lond. B 340, 333–336 (1993).

    Article  CAS  Google Scholar 

  24. Helin, K., Harlow, E. & Fattaey, A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol. Cell. Biol. 13, 6501–6508 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson, D. G., Ohtani, K. & Nevins, J. R. Autoregulatory control of E2F-1 expression in response to positive and negative regulators of cell cycle expression. Genes Dev. 8, 1514–1525 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Weintraub, S. J., Prater, C. A. & Dean, D. C. Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358, 259–261 (1992). The first study that suggested a role for RB as an active transcriptional repressor, later shown more directly (see reference 27).

    Article  CAS  PubMed  Google Scholar 

  27. Weintraub, S. J. et al. Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375, 812–815 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Nevins, J. Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ. 9, 585–593 (1998).

    CAS  PubMed  Google Scholar 

  29. Flemington, E. K., Speck, S. H. & Kaelin, J., W. G. E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc. Natl Acad. Sci. USA 90, 6914–6918 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bremner, R. et al. A. Direct transcriptional repression by pRB and its reversal by specific cyclins. Mol. Cell. Biol. 15, 3256–3265 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adnane, J., Shao, Z. & Robbins, P. D. The retinoblastoma susceptibility gene product represses transcription when directly bound to the promoter. J. Biol. Chem. 270, 8837–8843 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Harbour, J. W. & Dean, D. C. Chromatin remodeling and Rb activity. Curr. Opin. Cell Biol. 12, 685–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Harbour, J. W. & Dean, D. C. Corepressors and retinoblastoma protein function. Curr. Top. Microbiol. Immunol. 254, 137–144 (2001).

    CAS  PubMed  Google Scholar 

  34. Brehm, A. & Kouzarides, T. Retinoblastoma protein meets chromatin. Trends Biochem. Sci. 24, 142–145 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Buchkovich, K., Duffy, L. A. & Harlow, E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58, 1097–1105 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Cooper, S. & Shayman, J. A. Revisiting retinoblastoma protein phosphorylation during the mammalian cell cycle. Cell. Mol. Life Sci. 58 580–595 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Kennedy, B., Barbie, D., Classon, M., Dyson, N. & Harlow, E. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev. 15, 2855–2868 (2000).

    Article  Google Scholar 

  39. Royzman, I., Austin, R. J., Bosco, G., Bell, S. P. & Orr-Weaver, T. L. ORC localization in Drosophila follicle cells and the effects of mutations in dE2F and dDP. Genes Dev. 13, 827–840 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bosco, G., Du, W. & Orr-Weaver, T. DNA replication control through interaction of E2F-RB and the origin recognition complex. Nature Cell Biol. 3, 289–295 (2001). References 38 and 40 indicate a direct role for RB in DNA replication.

    Article  CAS  PubMed  Google Scholar 

  41. Lipinski, M. M. & Jacks, T. The retinoblastoma gene family in differentiation and development. Oncogene 18, 7873–7882 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Hickman, E. S., Moroni, M. C. & Helin, K. The role of p53 and Rb in apoptosis and cancer. Curr. Opin. Genet. Dev. 12, 60–66 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, X. & Levine, A. J. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qin, X. -Q., Livingston, D. M., Kaelin, W. G. J. & Adams, P. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 91, 10918–10922 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shan, B. & Lee, W. -H. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell. Biol. 14, 8166–8173 (1994). References 43–45 first indicated a positive role for E2F1 in inducing apoptosis, raising the possibility that RB could have anti-apoptotic functions.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo, Z., Yikang, S., Yoshida, H., Mak, T. W. & Zacksenhaus, E. Inactivation of the retinoblastoma tumor suppressor induces Apaf-1 dependent and independent apoptotic pathways during embryogenesis. Cancer Res. 61, 8395–8400 (2001).

    CAS  PubMed  Google Scholar 

  47. Ishida, S. et al. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol. Cell. Biol. 21, 4684–4699 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moroni, M. et al. Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biol. 3, 552–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Muller, H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 15, 267–285 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morris, E. J. & Dyson, N. J. Retinoblastoma protein partners. Adv. Cancer Res. 82, 1–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Mulligan, G. & Jacks, J. The retinoblastoma gene family: cousins with overlapping interests. Trends Genet. 14, 223–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Classon, M. & Dyson, N. p107 and p130: versatile proteins with interesting pockets. Exp. Cell Res. 264, 135–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Zhu, L. et al. Growth suppression by members of the retinoblastoma protein family. Cold Spring Harb. Symp. Quant. Biol. 59, 75–84 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Zhu, L. et al. The pRB-related protein p107 contains two growth suppression domains: Independent interactions with E2F and cyclin/cdk complexes. EMBO J. 14, 1904–1913 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dynlacht, B. D., Moberg, K., Lees, J. A., Harlow, E. & Zhu, L. Specific regulation of E2F family members by cyclin-dependent kinase. Mol. Cell. Biol. 17, 3867–3875 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhu, L., Harlow, E. & Dynlacht, B. D. p107 uses a p21CIP1- related domain to bind cyclin/cdk2 and regulate interactions with E2F. Genes Dev. 9, 1740–1752 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Jiang, Z., Guo, Z., Saad, F. A. & Zacksenhaus, E. Retinoblastoma gene promoter directs transgene expression exclusively to the nervous system. J. Biol. Chem. 276, 593–600 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Zacksenhaus, E. et al. pRb controls proliferation, differentiation, and death of skeletal muscle cells and other lineages during embryogenesis. Genes Dev. 10, 3051–3064 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Lee, E. Y. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–294 (1992). References 58–60 explore the developmental consequences of loss of Rb in mice, and indicate that Rb is important in proliferation, apototosis and differentiation during development.

    Article  CAS  PubMed  Google Scholar 

  61. Morgenbesser, S. D., Williams, B. O., Jacks, T. & De Pinho, R. A. p53-dependent apoptosis produced by Rb-deficiency in the developing lens. Nature 371, 72–74 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Jacks, T. Tumor suppressor gene mutations in mice. Annu. Rev. Genet. 30, 603–636 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Herrera, R. E., Makela, T. P. & Weinberg, R. A. TGFβ-induced growth inhibition in primary fibroblasts requires the retinoblastoma protein. Mol. Biol. Cell. 7, 1335–1342 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Harrington, E. A., Bruce, J. L., Harlow, E. & Dyson, N. pRB plays an essential role in cell cycle arrest induced by DNA damage. Proc. Natl Acad. Sci. USA 95, 11945–11950 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brugarolas, J. et al. Inhibition of cyclin-dependent kinase 2 by p21 is necessary for retinoblastoma protein-mediated G1 arrest after γ-irradiation. Proc. Natl Acad. Sci. USA 96, 1002–1007 (1999). The experiments described in references 64 and 65 indicate a role for RB in DNA-damage-induced G1 arrest.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Classon, M., Kennedy, B. K., Mulloy, R. & Harlow, E. E. Opposing roles for pRB and p107 in adipocyte differentiation. Proc. Natl Acad. Sci. USA 97, 10826–10831 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, P. -L., Riley, D. J., Chen, Y. & Lee, W. -H. Retinoblastoma protein positively regulates terminal adipocyte differentiation through direct interaction with C/EBPs. Genes Dev. 10, 2794–2804 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Novitch, B. G., Mulligan, G. J., Jacks, T. & Lassar, A. B. Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J. Cell Biol. 135, 441–456 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Novitch, B., Spicer, D., Kim, P., Cheung, W. & Lassar, A. pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr. Biol. 9, 449–459 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Gu, W. et al. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72, 309–324 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Puri, P. L. et al. Class I histone deacetylases sequentially interact with MyoD and pRB during skeletal myogenesis. Mol. Cell. 8, 885–897 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Chen, P. L., Riley, D. J., Chen-Kiang, S. & Lee, W. H. Retinoblastoma protein directly interacts with and activates the transcription factor NF-IL6. Proc. Natl Acad. Sci. USA 93, 465–469 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sellers, W. R. et al. Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev. 12, 95–106 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kowalik, T. F., DeGregori, J., Schwarz, J. K. & Nevins, J. R. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J. Virol. 69, 2491–2500 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. DeGregori, J., Leone, G., Miron, A., Jakoi, L. & Nevins, J. R. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl Acad. Sci. USA 94, 7245–7250 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ziebold, U., Reza, T., Caron, A. & Lees, J. A. E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes Dev. 15, 386–391 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tsai, K. Y. et al. Mutation of E2F1 suppresses apoptosis and inappropriate S-phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell. 2, 293–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Guo, Z., Yikang, S., Yoshida, H., Mak, T. & Zacksenhaus, E. Inactivation of the retinoblastoma tumor suppressor induces Apaf-1 dependent and independent apoptotic pathways during embryogenesis. Cancer Res. 61, 8395–8400 (2001).

    CAS  PubMed  Google Scholar 

  79. Simpson, M. T. W. et al. Caspase 3 deficiency rescues peripheral nervous system defect in retinoblastom nullizygous mice. J. Neurosci. 21, 7089–7098 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Iavarone, A., Garg, P., Lasorella, A., Hsu, J. & Israel, M. A. The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev. 8, 1270–1284 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Lasorella, A., Noseda, M., Beyna, M. & Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407, 592–598 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Lipinski, M., MacLeod, K., Williams, B., Mullaney, T., Crowley, D. & Jacks, T. Cell-autononomous and non-cell-autonomous functions of the Rb tumor suppressor in developing central nervous system. EMBO J. 20, 3402–3413 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Williams, B. O. et al. Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. EMBO J. 13, 4251–4259 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Maandag, E. C. R. et al. Developmental rescue of an embryonic-lethal mutation in the retinoblastoma gene in chimeric mice. EMBO J. 13, 4260–4268 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Voojis, M. & Berns, A. Developmental defects and tumor predisposition in Rb mutant mice. Oncogene 18, 5293–5303 (1999).

    Article  CAS  Google Scholar 

  86. Whyatt, D. & Grosveld, F. Cell-nonautonomous function of the retinoblastoma tumor suppressor protein: new interpretations of old phenotypes. EMBO J. 3, 130–135 (2002).

    Article  CAS  Google Scholar 

  87. Ferguson, K. L. et al. Telencephalon-specific Rb knockouts reveal enhanced neurogenesis, survival and abnormal cortical development. EMBO J. 21, 3337–3346 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cobrinik, D. et al. Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev. 10, 1633–1644 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, M. -H. et al. Targeted disruption of p107: functional overlap between p107 and Rb. Genes Dev. 10, 1621–1632 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. LeCouter, J. E, Kablar B., Whyte P. F., Ying C., Rudnicki M. A. Strain-dependent embryonic lethality in mice lacking the retinoblastoma-related p130 gene. Development 125, 4669–4679 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. LeCouter, J. E. et al. A. Strain-dependent myeloid hyperplasia, growth deficiency, and accelerated cell cycle in mice lacking the pRB-related p107 gene. Mol. Cell. Biol. 18, 7455–7465 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mulligan, G. J., Wong, J. & Jacks, T. p130 is dispensable in peripheral T lymphocytes: evidence for functional compensation by p107 and p130. Mol. Cell. Biol. 18, 206–220 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Takahashi, Y., Rayman, J. & Dynlacht, B. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 14, 804–816 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wells, J., Boyd, K., Fry, C., Bartley, S. & Farnham, P. Target gene specificity of E2F and pocket protein family members in living cells. Mol. Cell. Biol. 20, 5797–5807 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bruce, J., Hurford, R., Classon, M., Koh, J. & Dyson, N. Requirements for cell cycle arrest by p16. Mol. Cell. 6, 737–742 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Fajas, L. et al. E2Fs regulate adipocyte differentiation. Dev. Cell. 3, 39–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Robanus-Maandag, E. et al. p107 is a suppressor of retinoblastoma development in pRB-deficient mice. Genes Dev. 12, 1599–1609 (1998). References 88, 89 and 97 initiated analyses of mouse strains that are deficient in Rb, p107 and p130, showing separate and overlapping functions of the proteins in this family.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sage, J. et al. Targeted disruption of the three Rb-related genes leads to loss of G1 control and immortalization. Genes Dev. 14, 3037–3050 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dannenberg, J. -H., van Rossum, A., Schuijff, L. & te Riele, H. Ablation of the retinoblastoma gene family deregulates G1 control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev. 14, 3051–3064 (2000). References 98 and 99 analyse the phenotype of cells deficient in Rb, p107 and p130 isolated from chimeric animals generated using embryonic stem cells that are deficient in all three proteins. These studies indicate that these cells have deregulation of the cell cycle, but it is presently unknown what the contribution of these cells to different tissues is.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vooijs, M., te Riele, H., van der Valk, M. & Berns, A. Tumor formation in mice with somatic inactivation of the retinoblastoma gene in interphotoreceptor retinol binding protein-expressing cells. Oncogene 21, 4635–4645 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Vooijs, M. & Berns, A. Developmental defects and tumor predisposition in Rb mutant mice. Oncogene 18, 5293–5303 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Williams, B. O. et al. Cooperative tumorigenic effects of germline mutations in Rb and p53. Nature Genet. 7, 480–484 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Windle, J. J. et al. Retinoblastoma in transgenic mice. Nature 343, 665–669 (1990).

    Article  CAS  PubMed  Google Scholar 

  104. Saenz Robles, M. T., Symonds, H., Chen, J. & van Dyke, T. Induction versus progression of brain tumor development: differential functions for the pRB and p53-targeting domains of SV40 T antigen. Mol. Cell Biol. 14, 2686–2698 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Howes, K. A. et al. Apoptosis or retinoblastoma: alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence of p53. Genes Dev. 8, 1300–1310 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Yamasaki, L. et al. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85, 537–548 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Field, S. J. et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85, 549–561 (1996). The surprising finding in references 106 and 107 was that ageing mice lacking E2F1 displayed a wide range of tumours.

    Article  CAS  PubMed  Google Scholar 

  108. Yamamoto, H. et al. Paradoxical increase in retinoblastoma protein in colorectal carcinomas may protect cells from apoptosis. Clin. Cancer Res. 5, 1805–1815 (1999).

    CAS  PubMed  Google Scholar 

  109. Elliott, M. J., Dong, Y. B., Yang, H. & McMasters, K. M. E2F-1 upregulates c-Myc and p14ARF and induces apoptosis in colon cancer cells. Clin. Cancer Res. 7, 3590–3597 (2001).

    CAS  PubMed  Google Scholar 

  110. Pierce, A. M. et al. E2F1 has both oncogenic and tumor-suppressive properties in a transgenic mouse model. Mol. Cell Biol. 19, 6408–6414 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pierce, A. M., Fisher, S. M., Conti, C. J. & Johnson, D. G. Deregulated expression of E2F1 induces hyperplasia and cooperates with ras in skin tumor development. Oncogene 12, 1267–1276 (1998).

    Article  CAS  Google Scholar 

  112. Jiang, Z. & Zacksenhaus, E. Activation of retinoblastoma protein in mammary gland leads to ductal growth suppression, precocious differentiation, and adenocarcinoma. J. Cell Biol. 156, 185–198 (2002). The studies in this paper found a counterintuitive role for a constitutively active (phosphorylation-site mutations) Rb molecule that was found to induce adenocarcinoma in transgenic mice, indicating that too much Rb might prevent apoptotic responses that normally safeguard against tumour formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lu, X. & Horvitz, H. R. lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell 95, 981–991 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Ceol, C. J. & Horvitz, H. R. dpl-1 DP and efl1 E2F act with lin-35 Rb to antagonize Ras signaling in C. elegans vulval development. Mol Cell, 7, 461–473 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Boxem, M. & van den Heuvel, S. lin-35 RB and cki-1 Cip/Kip cooperate in developmental regulation of G1 progression in C. elegans. Development 128, 4349–4359 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Boxem, M. & van den Heuvel, S. C. elegans Class B synthetic multivulva genes act in G(1) regulation. Curr. Biol. 12, 906–911 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Duronio, R. J., O'Farrell, P. H., Xie, J. -E., Brook, A. & Dyson, N. The transcription factor E2F is required for S phase during Drosophila embryogenesis. Genes Dev. 9, 1445–1455 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. Du, W., Vidal, M., Xie, J. -E. & Dyson, N. RBF, a novel RB-related gene that regulates E2F activity and interacts with cyclin E in Drosophila. Genes Dev. 10, 1206–1218 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Du, W. Suppression of the rbf null mutants by a de2f1 allele that lacks transactivation domain. Development 127, 367–379 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Frolov, M. V. et al. Functional antagonism between E2F family members. Genes Dev. 15, 2146–2160 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Myster, D. L., Bonnette, P. C. & Duronio, R. J. A role for the DP subunit of the E2F transcription factor in axis determination during Drosophila oogenesis. Development 127, 3249–3261 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Cayirlioglu, P., Bonnette, P. C., Dickson, M. R. & Duronio, R. J. Drosophila E2f2 promotes the conversion from genomic DNA replication to gene amplification in ovarian follicle cells. Development 128, 5085–5098 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Stevaux, O., D., D., Frolov, M. V., Taylor-Harding, B., Morris, E. & Dyson, N. Distinct mechanisms of E2F regulation by Drosophila RBF1 and RBF2. EMBO J. 21, 4297–4937 (2002).

    Article  Google Scholar 

  124. Neufeld, T. P., de la Cruz, A. F. A., Johnston, L. A. & Edgar, B. A. Coordination of cell growth and division by Drosophila E2F. Cell 93, 1183–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Lee, J. -O., Russo, A. A. & Pavletich, N. P. Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391, 859–865 (1998). Describes the crystal structure of the RB pocket bound to E7 and, as such, laid the foundation for many mutational studies of this domain.

    Article  CAS  PubMed  Google Scholar 

  126. Dick, F. A., Sailhamer, E. & Dyson, N. J. Mutagenesis of the pRB pocket domain reveals that cell cycle arrest functions are separable from binding to viral oncoproteins. Mol. Cell Biol. 20, 3715–3727 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dick, F. A. & Dyson, N. J. Three regions of the pRB pocket domain affect its inactivation by human papillomavirus E7 proteins. J. Virol. 76, 6224–6234 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dahiya, A., Gavin, M. R., Luo, R. X. & Dean, D. C. Role of the LXCXE binding site in Rb function. Mol. Cell Biol. 20, 6799–6805 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen, T. -T. & Wang, J. Y. J. Establishment of irreversible growth arrest in myogenic differentiation requires the RB LXCXE-binding function. Mol. Cell Biol. 20, 5571–5580 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Knudsen, K. E. et al. RB-dependent S-phase response to DNA damage. Mol. Cell Biol. 20, 7751–7763 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chestukhin, A., Litovchick, L., Rudich, K. & De Caprio, J. A. Nucleocytoplasmic shuttling of p130: novel regulatory mechanism. Mol. Cell Biol. 22, 453–468 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chan, H. M., Krstic-Demonacos, M., Smith, L., Demonacos, C. & N. B., L. Acetylation control of the retinoblastoma tumour suppressor protein. Nature Cell Biol. 3, 667–674 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Settleman, S. van den Heuvel, N. Dyson, F. Dick, E. Morris and D. Dimova for helpful comments and/or reading of this manuscript. We also thank G. Klein and all previous and present members of the Harlow and Dyson laboratories for helpful discussions over the years. Finally, we apologize to all our colleagues whose interesting work we could not cite, due to space restrains.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

osteosarcoma

retinoblastoma

small-cell lung carcinoma

LocusLink

Apaf1

caspase-3

CDK2

CDK4

CDK6

cyclin D

E2f1

E2F1

E2f2

E2F2

E2f3

E2F3

E2F4

E2F5

E2F6

Id2

p15

p18

p19

p21

p27

p107

p130

Ras

Rb

RB

Glossary

ECTOPIC CELL CYCLE

Unscheduled or inappropriate entry into the cell cycle.

ECTOPIC S-PHASE CELLS

Unscheduled or inappropriate entry into S phase.

CHIMAERA

An organism with a genetic mixture of cells, such as wild type and mutant.

TELENCEPHALON

Evolutionarily, the most recently evolved part of the brain. It is the forebrain, which is involved in cognition, learning and memory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Classon, M., Harlow, E. The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2, 910–917 (2002). https://doi.org/10.1038/nrc950

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc950

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing