Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies

Key Points

  • Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disease, encompasses a histological spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), the latter of which has varying degrees of fibrosis. NASH can progress to cirrhosis and is projected to be the leading cause of liver transplantation by 2020. There is no approved therapy for NASH.

  • Several pharmacological strategies for NASH treatment, reflecting putative pathogenic mechanisms, are at the preclinical or early clinical stages of development, and include the modulation of nuclear transcription factors, reversal of lipotoxicity and oxidative stress, and modulation of cellular energy homeostasis and metabolism.

  • In parallel to these metabolic approaches, there is increasing evidence that numerous noxae that initiate liver disease converge to common, stereotyped patterns of injury, inflammation and fibrogenesis in NASH. Molecular mechanisms mediating cell injury and inflammation are also targeted by experimental therapies, including modulation of the inflammasome, chemokines and eicosanoids.

  • An important advance in our knowledge of liver diseases is the understanding that the most advanced stages of fibrosis (and even cirrhosis itself) are part of a dynamic process that may regress if the underlying fibrogenic stimuli are corrected. On this basis, several therapeutic strategies targeting key pathogenic mechanisms involved in fibrogenesis are being evaluated, including inhibitors of galectin 3, leukotrienes, caspases, Hedgehog signalling and lysyl oxidase-like 2 (LOXL2).

  • Collectively, these promising pharmacological strategies may become the armamentarium for an individualized treatment of NASH, targeting the predominant pathogenic mechanisms that operate in each patient and at each stage of disease.

  • Future randomized trials — of adequate power and duration, and with appropriate clinical outcomes — are needed to assess the long-term effectiveness and safety of each pharmacological option.

Abstract

Non-alcoholic fatty liver disease — the most common chronic liver disease — encompasses a histological spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Over the next decade, NASH is projected to be the most common indication for liver transplantation. The absence of an effective pharmacological therapy for NASH is a major incentive for research into novel therapeutic approaches for this condition. The current focus areas for research include the modulation of nuclear transcription factors; agents that target lipotoxicity and oxidative stress; and the modulation of cellular energy homeostasis, metabolism and the inflammatory response. Strategies to enhance resolution of inflammation and fibrosis also show promise to reverse the advanced stages of liver disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ceramide synthesis and the pathogenesis of non-alcoholic steatohepatitis.
Figure 2: The inflammasome and its involvement in initiation of inflammation.
Figure 3: Chemokines in the pathogenesis of non-alcoholic steatohepatitis.
Figure 4: The self-resolving inflammatory process in the liver.

Similar content being viewed by others

References

  1. Chalasani, N. et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 55, 2005–2023 (2012).

    PubMed  Google Scholar 

  2. Wong, R. J. et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 148, 547–555 (2015).

    PubMed  Google Scholar 

  3. Musso, G. et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med. 11, e1001680 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Birkenfeld, A. L. & Shulman, G. I. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 59, 713–723 (2014).

    PubMed  Google Scholar 

  5. Kirpich, I. A., Marsano, L. S. & McClain, C. J. Gut–liver axis, nutrition, and non-alcoholic fatty liver disease. Clin. Biochem. 48, 923–930 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Musso, G., Cassader, M., Rosina, F. & Gambino, R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia 55, 885–904 (2012).

    CAS  PubMed  Google Scholar 

  7. Ding, L. et al. Coordinated actions of FXR and LXR in metabolism: from pathogenesis to pharmacological targets for type 2 diabetes. Int. J. Endocrinol. 2014, 751859 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Roda, A. et al. Semisynthetic bile acid FXR and TGR5 agonists: physicochemical properties, pharmacokinetics, and metabolism in the rat. J. Pharmacol. Exp. Ther. 350, 56–68 (2014).

    PubMed  Google Scholar 

  9. Zhang, Y., Castellani, L. W., Sinal, C. J., Gonzalez, F. J. & Edwards, P. A. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev. 18, 157–169 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Min, H. K. et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell. Metab. 15, 665–674 (2012). This study examines pathways involved in cholesterol metabolism that are altered in the liver of patients with NASH.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kong, B. et al. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J. Pharmacol. Exp. Ther. 328, 116–122 (2009).

    CAS  PubMed  Google Scholar 

  12. Fiorucci, S. et al. A farnesoid X receptor-small heterodimer partner regulatory cascade modulates tissue metalloproteinase inhibitor-1 and matrix metalloprotease expression in hepatic stellate cells and promotes resolution of liver fibrosis. J. Pharmacol. Exp. Ther. 314, 584–595 (2005).

    CAS  PubMed  Google Scholar 

  13. Ma, K., Saha, P. K., Chan, L. & Moore, D. D. Farnesoid X receptor is essential for normal glucose homeostasis. J. Clin. Invest. 116, 1102–1109 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Watanabe, M. et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest. 113, 1408–1418 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Claudel, T. et al. Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology 125, 544–555 (2003).

    CAS  PubMed  Google Scholar 

  16. Neuschwander-Tetri, B. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385, 956–965 (2015). To date, this study is the largest randomized trial with histological end points in NASH.

    CAS  PubMed  Google Scholar 

  17. Xin, X. M. et al. GW4064, a farnesoid X receptor agonist, upregulates adipokine expression in preadipocytes and HepG2 cells. World J. Gastroenterol. 20, 15727–15735 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Adams, A. C. et al. Fundamentals of FGF19 and FGF21 action in vitro and in vivo. PLoS ONE 7, e38438 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, Y. D. et al. Farnesoid X receptor antagonizes NF-κB in hepatic inflammatory response. Hepatology 48, 1632–1643 (2008).

    CAS  PubMed  Google Scholar 

  20. Pellicciari, R. et al. 6α-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J. Med. Chem. 45, 3569–3572 (2002).

    CAS  PubMed  Google Scholar 

  21. Musso, G. Obeticholic acid and resveratrol in nonalcoholic fatty liver disease: all that is gold does not glitter, not all those who wander are lost. Hepatology 61, 2104–2106 (2015).

    PubMed  Google Scholar 

  22. Li, G. et al. A tea catechin, epigallocatechin-3-gallate, is a unique modulator of the farnesoid X receptor. Toxicol. Appl. Pharmacol. 258, 268–274 (2012).

    CAS  PubMed  Google Scholar 

  23. Carotti, A. et al. Beyond bile acids: targeting Farnesoid X Receptor (FXR) with natural and synthetic ligands. Curr. Top. Med. Chem. 14, 2129–2142 (2014).

    CAS  PubMed  Google Scholar 

  24. Banerjee, M., Robbins, D. & Chen, T. Targeting xenobiotic receptors PXR and CAR in human diseases. Drug Discov. Today 20, 618–628 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Sookoian, S. et al. The nuclear receptor PXR gene variants are associated with liver injury in nonalcoholic fatty liver disease. Pharmacogenet. Genom. 20, 1–8 (2010).

    CAS  Google Scholar 

  26. Zhou, J. et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARγ in promoting steatosis. Gastroenterol. 134, 556–567 (2008).

    CAS  Google Scholar 

  27. Bitter, A. et al. Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms. Arch. Toxicol. 89, 2089–2103 (2015).

    CAS  PubMed  Google Scholar 

  28. Moreau, A. et al. A novel pregnane X receptor and S14-mediated lipogenic pathway in human hepatocyte. Hepatology 49, 2068–2079 (2009).

    CAS  PubMed  Google Scholar 

  29. Li, L. et al. SLC13A5 is a novel transcriptional target of the pregnane X receptor and sensitizes drug-induced steatosis in human liver. Mol. Pharmacol. 87, 674–682 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoekstra, M. et al. Activation of the nuclear receptor PXR decreases plasma LDL-cholesterol levels and induces hepatic steatosis in LDL receptor knockout mice. Mol. Pharm. 6, 182–189 (2009).

    CAS  PubMed  Google Scholar 

  31. Miao, J., Fang, S., Bae, Y. & Kemper, J. K. Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1α. J. Biol. Chem. 281, 14537–14546 (2006).

    CAS  PubMed  Google Scholar 

  32. Valenti, L. et al. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis. Diabetes 57, 1355–1362 (2008).

    CAS  PubMed  Google Scholar 

  33. Sun, M., Cui, W., Woody, S. K. & Staudinger, J. L. Pregnane X receptor modulates the inflammatory response in primary cultures of hepatocytes. Drug Metab. Dispos. 43, 335–343 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Wang, K., Damjanov, I. & Wan, Y. J. The protective role of pregnane X receptor in lipopolysaccharide/d-galactosamine-induced acute liver injury. Lab. Invest. 90, 257–265 (2010).

    CAS  PubMed  Google Scholar 

  35. Kittayaruksakul, S. et al. Identification of three novel natural product compounds that activate PXR and CAR and inhibit inflammation. Pharm. Res. 30, 2199–2208 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Haughton, E. L. et al. Pregnane X receptor activators inhibit human hepatic stellate cell transdifferentiation in vitro. Gastroenterology 131, 194–209 (2006).

    CAS  PubMed  Google Scholar 

  37. Marek, C. J. et al. Pregnenolone-16α-carbonitrile inhibits rodent liver fibrogenesis via PXR (pregnane X receptor)-dependent and PXR-independent mechanisms. Biochem. J. 387, 601–608 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Morere, P. et al. Information obtained by liver biopsy in 100 tuberculous patients. Sem. Hop. 51, 2095–2102 (1975).

    CAS  PubMed  Google Scholar 

  39. Biswas, A., Pasquel, D., Tyagi, R. K. & Mani, S. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation. Biochem. Biophys. Res. Commun. 406, 371–376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Souza-Mello, V. Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease. World J. Hepatol. 7, 1012–1019 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Kim, H. et al. Liver-enriched transcription factor CREBH interacts with peroxisome proliferator-activated receptor α to regulate metabolic hormone FGF21. Endocrinology 155, 769–782 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Velkov, T. Interactions between human liver fatty acid binding protein and peroxisome proliferator activated receptor selective drugs. PPAR Res. 2013, 938401 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. Qu, S. et al. PPARα mediates the hypolipidemic action of fibrates by antagonizing FoxO1. Am. J. Physiol. Endocrinol. Metab. 292, E421–E434 (2007).

    CAS  PubMed  Google Scholar 

  44. Toyama, T. et al. PPARα ligands activate antioxidant enzymes and suppress hepatic fibrosis in rats. Biochem. Biophys. Res. Commun. 324, 697–704 (2004).

    CAS  PubMed  Google Scholar 

  45. Mogilenko, D. A. et al. Peroxisome proliferator-activated receptor α positively regulates complement C3 expression but inhibits tumor necrosis factor α-mediated activation of C3 gene in mammalian hepatic-derived cells. J. Biol. Chem. 288, 1726–1738 (2013).

    CAS  PubMed  Google Scholar 

  46. Kleemann, R. et al. Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFκB-C/EBP-β complex formation. Blood 101, 545–551 (2003).

    CAS  PubMed  Google Scholar 

  47. Pawlak, M. et al. The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. Hepatology 60, 1593–1606 (2014). This study uncovers the transrepressive anti-fibrotic activity of PPARα in the liver.

    CAS  PubMed  Google Scholar 

  48. Mansouri, R. M., Bauge, E., Staels, B. & Gervois, P. Systemic and distal repercussions of liver-specific peroxisome proliferator-activated receptor-α control of the acute-phase response. Endocrinology 149, 3215–3223 (2008).

    CAS  PubMed  Google Scholar 

  49. Delerive, P. et al. Peroxisome proliferator-activated receptor α negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-κB and AP-1. J. Biol. Chem. 274, 32048–32054 (1999).

    CAS  PubMed  Google Scholar 

  50. Nagasawa, T. et al. Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARδ agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet. Eur. J. Pharmacol. 536, 182–191 (2006).

    CAS  PubMed  Google Scholar 

  51. Ip, E., Farrell, G., Hall, P., Robertson, G. & Leclercq, I. Administration of the potent PPARα agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology 39, 1286–1296 (2004).

    CAS  PubMed  Google Scholar 

  52. Bojic, L. A. et al.PPARδ activation attenuates hepatic steatosis in Ldlr−/− mice by enhanced fat oxidation, reduced lipogenesis, and improved insulin sensitivity. J. Lipid Res. 55, 1254–1266 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, Y. X. et al. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003).

    CAS  PubMed  Google Scholar 

  54. Lim, H. J. et al. PPARδ ligand L-165041 ameliorates Western diet-induced hepatic lipid accumulation and inflammation in LDLR−/− mice. Eur. J. Pharmacol. 622, 45–51 (2009).

    CAS  PubMed  Google Scholar 

  55. Bays, H. E. et al. MBX-8025, a novel peroxisome proliferator receptor-δ agonist: lipid and other metabolic effects in dyslipidemic overweight patients treated with and without atorvastatin. J. Clin. Endocrinol. Metab. 96, 2889–2897 (2011).

    CAS  PubMed  Google Scholar 

  56. Staels, B. et al. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 58, 1941–1952 (2013). This study provides experimental evidence for the effectiveness of dual PPARα and PPARδ inhibition for the treatment of NASH.

    CAS  PubMed  Google Scholar 

  57. Sanyal A. J., et al. The hepatic and extra-hepatic profile of resolution of steatohepatitis induced by GFT-505. Hepatology 62 (Suppl. 1), 1252A (2015).

    Google Scholar 

  58. Odegaard, J. J. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao, C. et al. PPARγ agonists prevent TGFβ1/Smad3-signaling in human hepatic stellate cells. Biochem. Biophys. Res. Commun. 350, 385–391 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hedrington, M. S. & Davis, S. N. Discontinued in 2013: diabetic drugs. Expert Opin. Investig. Drugs 23, 1703–1711 (2014).

    CAS  PubMed  Google Scholar 

  61. Joshi, S. R. Saroglitazar for the treatment of dyslipidemia in diabetic patients. Expert Opin. Pharmacother. 16, 597–606 (2015).

    CAS  PubMed  Google Scholar 

  62. Shashank, R. et al. Saroglitazar in diabetic dyslipidemia: 1 year data. American Diabetes Association [online], (2015).

    Google Scholar 

  63. Mukul, R. et al. Saroglitazar shows therapeutic benefits in mouse model of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). American Diabetes Association [online], (2015).

    Google Scholar 

  64. Banshi, D. et al. To assess the effect of 4mg saroglitazar on patients of diabetes dyslipidemia with nonalcoholic fatty liver disease for 24 weeks at diabetes care centre. American Diabetes Association [online], (2015).

    Google Scholar 

  65. Puri, P. et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46, 1081–1090 (2007). This study provides evidence for the lipotoxicity of non-triglyceride lipid species in human NASH.

    CAS  PubMed  Google Scholar 

  66. Gorden, D. L. et al. Increased diacylglycerols characterize hepatic lipid changes in progression of human nonalcoholic fatty liver disease; comparison to a murine model. PLoS ONE 6, e22775 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Musso, G., Gambino, R. & Cassader, M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog. Lipid Res. 52, 175–191 (2013).

    CAS  PubMed  Google Scholar 

  68. Bommer, G. T. & MacDougald, O. A. Regulation of lipid homeostasis by the bifunctional SREBF2-miR33a locus. Cell Metab. 13, 241–247 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kang, Q. & Chen, A. Curcumin inhibits srebp-2 expression in activated hepatic stellate cells in vitro by reducing the activity of specificity protein-1. Endocrinology 150, 5384–5394 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tomita, K. et al. Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology 59, 154–169 (2014). This study investigates mechanistic links connecting intracellular free-cholesterol accumulation to hepatic fibrosis in NASH.

    CAS  PubMed  Google Scholar 

  71. Dávalos, A. et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl Acad. Sci. USA 108, 9232–9237 (2011).

    PubMed  PubMed Central  Google Scholar 

  72. Li, Z. J., Ou-Yang, P. H. & Han, X. P. Profibrotic effect of miR-33a with Akt activation in hepatic stellate cells. Cell Signal. 26, 141–148 (2014).

    PubMed  Google Scholar 

  73. Liu, J. et al. Activation of mTORC1 disrupted LDL receptor pathway: a potential new mechanism for the progression of non-alcoholic fatty liver disease. Int. J. Biochem. Cell Biol. 61, 8–19 (2011).

    Google Scholar 

  74. Musso, G., Cassader, M., Bo, S., De Michieli, F. & Gambino, R. Sterol regulatory element-binding factor 2 (SREBF-2) predicts 7-year NAFLD incidence and severity of liver disease and lipoprotein and glucose dysmetabolism. Diabetes 62, 1109–1120 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Baselga-Escudero, L. et al. Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells. Nucleic Acids Res. 42, 882–892 (2014).

    CAS  PubMed  Google Scholar 

  76. Baselga-Escudero, L. et al. Chronic supplementation of proanthocyanidins reduces postprandial lipemia and liver miR-33a and miR-122 levels in a dose-dependent manner in healthy rats. J. Nutr. Biochem. 25, 151–156 (2014).

    CAS  PubMed  Google Scholar 

  77. Castro, B. M., Prieto, M. & Silva, L. C. Ceramide: a simple sphingolipid with unique biophysical properties. Prog. Lipid Res. 54, 53–67 (2014).

    CAS  PubMed  Google Scholar 

  78. Cirera-Salinas, D. et al. Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle 11, 922–933 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhu, C. et al. MicroRNA-33a inhibits lung cancer cell proliferation and invasion by regulating the expression of β-catenin. Mol. Med. Rep. 11, 3647–3651 (2014).

    PubMed  Google Scholar 

  80. Beckmann, N., Sharma, D., Gulbins, E., Becker, K. A. & Edelmann, B. Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons. Front. Physiol. 5, 331 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. Holland, W. L. et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J. Clin. Invest. 121, 1858–1870 (2011). This study provides evidence that ceramide formation is necessary for saturated fatty acid-induced insulin resistance.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kurek, K. et al. Inhibition of ceramide de novo synthesis reduces liver lipid accumulation in rats with nonalcoholic fatty liver disease. Liver Int. 34, 1074–1083 (2014).

    CAS  PubMed  Google Scholar 

  83. Grammatikos, G. et al. Serum acid sphingomyelinase is upregulated in chronic hepatitis C infection and nonalcoholic fatty liver disease. Biochim. Biophys. Acta 1841, 1012–1020 (2014).

    CAS  PubMed  Google Scholar 

  84. Cinar, R. et al. Hepatic cannabinoid-1 receptors mediate diet-induced insulin resistance by increasing de novo synthesis of long-chain ceramides. Hepatology 59, 143–153 (2014).

    CAS  PubMed  Google Scholar 

  85. Fucho, R. et al. ASMase regulates autophagy and lysosomal membrane permeabilization and its inhibition prevents early stage non-alcoholic steatohepatitis. J. Hepatol. 60, 1126–1134 (2014). This study provides evidence that acid sphingomyelinase inhibition improves experimental NASH.

    Google Scholar 

  86. Liu, Z. et al. Induction of ER stress-mediated apoptosis by ceramide via disruption of ER Ca2+ homeostasis in human adenoid cystic carcinoma cells. Cell Biosci. 4, 71 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. Lee, S. Y. et al. Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice. Hepatology 62, 135–146 (2015).

    CAS  PubMed  Google Scholar 

  88. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011). This report is the first demonstration that ceramide can activate the inflammasome, leading to caspase 1 cleavage.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Harvald, E. B., Olsen, A. S. & Færgeman, N. J. Autophagy in the light of sphingolipid metabolism. Apoptosis 20, 658–670 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Moles, A. et al. Acidic sphingomyelinase controls hepatic stellate cell activation and in vivo liver fibrogenesis. Am. J. Pathol. 177, 1214–1224 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Czaja, M. J. A new mechanism of lipotoxicity: calcium channel blockers as a treatment for nonalcoholic steatohepatitis? Hepatology 62, 312–314 (2015).

    CAS  PubMed  Google Scholar 

  92. Kornhuber, J., Tripal, P., Gulbins, E. & Muehlbacher, M. Functional inhibitors of acid sphingomyelinase (FIASMAs). Handb. Exp. Pharmacol. 215, 169–186 (2013).

    CAS  Google Scholar 

  93. Kasumov, T. et al. Ceramide as a mediator of non-alcoholic fatty liver disease and associated atherosclerosis. PLoS ONE 10, e0126910 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. Bruce, C. R. et al. The sphingosine-1-phosphate analog FTY720 reduces muscle ceramide content and improves glucose tolerance in high fat-fed male mice. Endocrinology 154, 65–76 (2013).

    CAS  PubMed  Google Scholar 

  95. Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55–63 (2011). This is the first report to show that the anti-obesity and anti-inflammatory hormone adiponectin acts by stimulating ceramidase activity.

    CAS  PubMed  Google Scholar 

  96. Liu, Y. et al. Metabolomic profiling in liver of adiponectin knockout mice uncovers lysophospholipid metabolism as an important target of adiponectin action. Biochem J. 469, 71–82 (2015).

    CAS  PubMed  Google Scholar 

  97. Xia, J. et al. Targeted induction of ceramide degradation reveals roles for ceramides in nonalcoholic fatty liver disease and glucose metabolism. American Diabetes Association [online], (2015).

    Google Scholar 

  98. Choi, C. S. et al. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J. Biol. Chem. 282, 22678–22688 (2007). This is the first study to identify the different functions of DGAT1 and DGAT2 in the triglyceride synthetic pathway.

    CAS  PubMed  Google Scholar 

  99. Sanyal, A. J. et al. Effect of pradigastat, a diacylglycerol acyltransferase 1 inhibitor, on liver fat content in nonalcoholic fatty liver disease. Hepatology 62 (Suppl. 1), 1253A (2015).

    Google Scholar 

  100. Jornayvaz, F. R. et al. Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2. Proc. Natl Acad. Sci. USA 108, 5748–5752 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Harris, C. A. et al. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J. Lipid Res. 52, 657–667 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, C. et al. Roles of Acyl-CoA: diacylglycerol acyltransferases 1 and 2 in triacylglycerol synthesis and secretion in primary hepatocytes. Arterioscler. Thromb. Vasc. Biol. 35, 1080–1091 (2015).

    PubMed  Google Scholar 

  103. Toriumi, K. et al. Carbon tetrachloride-induced hepatic injury through formation of oxidized diacylglycerol and activation of the PKC/NF-κB pathway. Lab. Invest. 93, 218–229 (2013).

    CAS  PubMed  Google Scholar 

  104. Takekoshi, S., Kitatani, K. & Yamamoto, Y. Roles of oxidized diacylglycerol for carbon tetrachloride-induced liver injury and fibrosis in mouse. Acta Histochem. Cytochem. 47, 185–194 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee, S. J. et al. PKCδ as a regulator for TGFβ1-induced α-SMA production in a murine nonalcoholic steatohepatitis model. PLoS ONE 8, e55979 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ganji, S. H., Kukes, G. D., Lambrecht, N., Kashyap, M. L. & Kamanna, V. S. Therapeutic role of niacin in the prevention and regression of hepatic steatosis in rat model of nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G320–G327 (2014).

    CAS  PubMed  Google Scholar 

  107. Ganji, S. H., Kashyap, M. L. & Kamanna, V. S. Niacin inhibits fat accumulation, oxidative stress, and inflammatory cytokine IL-8 in cultured hepatocytes: impact on non-alcoholic fatty liver disease. Metabolism 64, 982–990 (2015).

    CAS  PubMed  Google Scholar 

  108. Cooper, D. L., Murrell, D. E., Roane, D. S. & Harirforoosh, S. Effects of formulation design on niacin therapeutics: mechanism of action, metabolism, and drug delivery. Int. J. Pharm. 490, 55–64 (2015).

    CAS  PubMed  Google Scholar 

  109. Xing, X. et al. Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A:diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver. Toxicol. Appl. Pharmacol. 280, 207–215 (2014).

    CAS  PubMed  Google Scholar 

  110. Lee, K. et al. Discovery of indolyl acrylamide derivatives as human diacylglycerol acyltransferase-2 selective inhibitors. Org. Biomol. Chem. 11, 849–858 (2013).

    CAS  PubMed  Google Scholar 

  111. Kim, M. O. et al. Discovery of a novel class of diacylglycerol acyltransferase 2 inhibitors with a 1H-pyrrolo[2,3-b]pyridine core. Biol. Pharm. Bull. 37, 1655–1660 (2014).

    CAS  PubMed  Google Scholar 

  112. Chambel, S. S., Santos-Gonçalves, A. & Duarte, T. L. The dual role of Nrf2 in nonalcoholic fatty liver disease: regulation of antioxidant defenses and hepatic lipid metabolism. Biomed. Res. Int. 2015, 597134 (2015).

    PubMed  PubMed Central  Google Scholar 

  113. Malloy, M. T. et al. Trafficking of the transcription factor Nrf2 to promyelocytic leukemia-nuclear bodies: implications for degradation of NRF2 in the nucleus. J. Biol. Chem. 288, 14569–14583 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bhakkiyalakshmi, E., Sireesh, D., Rajaguru, P., Paulmurugan, R. & Ramkumar, K. M. The emerging role of redox-sensitive Nrf2–Keap1 pathway in diabetes. Pharmacol. Res. 91, 104–114 (2015).

    CAS  PubMed  Google Scholar 

  115. Wang, C. et al. Nrf2 deletion causes 'benign' simple steatosis to develop into nonalcoholic steatohepatitis in mice fed a high-fat diet. Lipids Health Dis. 12, 165 (2013). This study provides evidence that NRF2 deletion is sufficient to promote the development of NASH from steatosis.

    PubMed  PubMed Central  Google Scholar 

  116. Meakin, P. J. et al. Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance. Mol. Cell. Biol. 34, 3305–3320 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. Collins, A. R. et al. Myeloid deletion of nuclear factor erythroid 2-related factor 2 increases atherosclerosis and liver injury. Arterioscler. Thromb. Vasc. Biol. 32, 2839–2846 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Oh, C. J. et al. Sulforaphane attenuates hepatic fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-β/Smad signaling. Free Radic. Biol. Med. 52, 671–682 (2012).

    CAS  PubMed  Google Scholar 

  119. Shimozono, R. et al. Nrf2 activators attenuate the progression of nonalcoholic steatohepatitis-related fibrosis in a dietary rat model. Mol. Pharmacol. 84, 62–70 (2013).

    CAS  PubMed  Google Scholar 

  120. Yu, Z. et al. Oltipraz upregulates the nuclear respiratory factor 2 α subunit (NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J mice. Diabetologia 54, 922–934 (2011); erratum 54, 989 (2011).

    CAS  PubMed  Google Scholar 

  121. Cleasby, A. et al. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS ONE 9, e98896 (2014).

    PubMed  PubMed Central  Google Scholar 

  122. Jnoff, E. et al. Binding mode and structure-activity relationships around direct inhibitors of the Nrf2–Keap1 complex. Chem. Med. Chem. 9, 699–705 (2014).

    CAS  PubMed  Google Scholar 

  123. Yuan, X. et al. Berberine ameliorates nonalcoholic fatty liver disease by a global modulation of hepatic mRNA and lncRNA expression profiles. J. Transl. Med. 13, 24 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Li, L. et al. Resveratrol modulates autophagy and NF-κB activity in a murine model for treating non-alcoholic fatty liver disease. Food Chem. Toxicol. 63, 166–173 (2014).

    CAS  PubMed  Google Scholar 

  125. Park, E. J. & Pezzuto, J. M. The pharmacology of resveratrol in animals and humans. Biochim. Biophys. Acta 1852, 1071–1113 (2015).

    CAS  PubMed  Google Scholar 

  126. Andrade, J. M. et al. Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation. Nutrition 30, 915–919 (2014).

    CAS  PubMed  Google Scholar 

  127. Zhu, W. et al. Effects and mechanisms of resveratrol on the amelioration of oxidative stress and hepatic steatosis in KKAy mice. Nutr. Metab. (Lond). 11, 35 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Konings, E. et al. The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men. Int. J. Obes. (Lond). 38, 470–473 (2014).

    CAS  Google Scholar 

  129. Bagul, P. K. et al. Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats. Pharmacol. Res. 66, 260–268 (2012).

    CAS  PubMed  Google Scholar 

  130. Gomez-Zorita, S. et al. Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress. Br. J. Nutr. 107, 202–210 (2012).

    CAS  PubMed  Google Scholar 

  131. Cho, S. J., Jung, U. J. & Choi, M. S. Differential effects of low-dose resveratrol on adiposity and hepatic steatosis in diet-induced obese mice. Br. J. Nutr. 108, 2166–2175 (2012).

    CAS  PubMed  Google Scholar 

  132. Timmers, S. et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14, 612–622 (2011). This is the first study assessing the metabolic effects of resveratrol in humans.

    CAS  PubMed  Google Scholar 

  133. Faghihzadeh, F., Adibi, P., Rafiei, R. & Hekmatdoost, A. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr. Res. 34, 837–843 (2014).

    CAS  PubMed  Google Scholar 

  134. Chen, S. et al. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Dig. Liver Dis. 47, 226–232 (2015).

    CAS  PubMed  Google Scholar 

  135. Poulsen, M. M. et al. High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes 62, 1186–1195 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Chachay, V. S. et al. Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 12, 2092–2103 (2014).

    CAS  PubMed  Google Scholar 

  137. Smoliga, J. M. & Blanchard, O. Enhancing the delivery of resveratrol in humans: if low bioavailability is the problem, what is the solution? Molecules 19, 17154–17172 (2014).

    PubMed  PubMed Central  Google Scholar 

  138. Panchal, S. K., Poudyal, H. & Brown, L. Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. J. Nutr. 142, 1026–1032 (2012).

    CAS  PubMed  Google Scholar 

  139. Ying, H. Z. et al. Dietary quercetin ameliorates nonalcoholic steatohepatitis induced by a high-fat diet in gerbils. Food Chem. Toxicol. 52, 53–60 (2013).

    CAS  PubMed  Google Scholar 

  140. Surapaneni, K. M., Priya, V. V. & Mallika, J. Pioglitazone, quercetin and hydroxy citric acid effect on cytochrome P450 2E1 (CYP2E1) enzyme levels in experimentally induced non alcoholic steatohepatitis (NASH). Eur. Rev. Med. Pharmacol. Sci. 18, 2736–2741 (2014).

    CAS  PubMed  Google Scholar 

  141. Hoek-van den Hil, E. F. et al. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice. PLoS ONE 8, e51588 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Guo, Y. & Bruno, R. S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem. 26, 201–210 (2015).

    PubMed  Google Scholar 

  143. Jiang, S. et al. Fibroblast growth factor 21 is regulated by the IRE1α-XBP1 branch of the unfolded protein response and counteracts endoplasmic reticulum stress-induced hepatic steatosis. J. Biol. Chem. 289, 29751–29765 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Li, Y. et al. Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology 146, 539–549 (2014).

    CAS  PubMed  Google Scholar 

  145. Wang, H., Qiang, L. & Farmer, S. R. Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol. Cell. Biol. 28, 188–200 (2008).

    PubMed  Google Scholar 

  146. Ogawa, Y. et al. bKlotho is required for metabolic activity of fibroblast growth factor 21. Proc. Natl Acad. Sci. USA 104, 7432–7437 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee, D. V. et al. Fibroblast growth factor 21 improves insulin sensitivity and synergizes with insulin in human adipose stem cell-derived (hASC) adipocytes. PLoS ONE 9, e111767 (2014).

    PubMed  PubMed Central  Google Scholar 

  148. Xu, J. et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58, 250–259 (2010).

    Google Scholar 

  149. Chau, M. D. et al. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK–SIRT1–PGC-1α pathway. Proc. Natl Acad. Sci. USA 28, 12553–12558 (2010).

    Google Scholar 

  150. Liang, Q. et al. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes 63, 4064–4075 (2014).

    CAS  PubMed  Google Scholar 

  151. Douris, N. et al. Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology 156, 2470–2481 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Gaich, G. et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 18, 333–340 (2013).

    CAS  PubMed  Google Scholar 

  153. Fisher, F. M. et al. Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets. Gastroenterology 147, 1073–1083 (2014).

    CAS  PubMed  Google Scholar 

  154. Fisher, F. M. et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 11, 2781–2789 (2010). This study introduces the concept of FGF21 resistance as a feature of obesity and diabetes.

    Google Scholar 

  155. Ye, X. et al. Long-lasting anti-diabetic efficacy of PEGylated FGF-21 and liraglutide in treatment of type 2 diabetic mice. Endocrine 49, 683–692 (2015).

    CAS  PubMed  Google Scholar 

  156. Hecht, R. et al. Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes. PLoS ONE 7, e49345 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Adams, A. C. et al. LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys. PLoS ONE 8, e65763 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Foltz, I. N. et al. Treating diabetes and obesity with an FGF21-mimetic antibody activating the βKlotho/FGFR1c receptor complex. Sci. Transl. Med. 4, 162ra153 (2012).

    PubMed  Google Scholar 

  159. Musso, G., Gambino, R. & Cassader, M. Emerging molecular targets for the treatment of nonalcoholic fatty liver disease. Annu. Rev. Med. 61, 375–392 (2010).

    CAS  PubMed  Google Scholar 

  160. Castaño, D. et al. Cardiotrophin-1 eliminates hepatic steatosis in obese mice by mechanisms involving AMPK activation. J. Hepatol. 60, 1017–1025 (2014).

    PubMed  Google Scholar 

  161. Hsu, W. H., Chen, T. H., Lee, B. H., Hsu, Y. W. & Pan, T. M. Monascin and ankaflavin act as natural AMPK activators with PPARα agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice. Food Chem. Toxicol. 64, 94–103 (2014).

    CAS  PubMed  Google Scholar 

  162. Li, H. et al. AMPK activation prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 signaling and endoplasmic reticulum stress response. Biochim. Biophys. Acta 1842, 1844–1854 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Dong, J. et al. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1. J. Lipid Res. 55, 363–374 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Li, J. et al. Hepatoprotective effects of berberine on liver fibrosis via activation of AMP-activated protein kinase. Life Sci. 98, 24–30 (2014).

    CAS  PubMed  Google Scholar 

  165. Zhai, X. et al. Curcumin regulates peroxisome proliferator-activated receptor-γ coactivator-1α expression by AMPK pathway in hepatic stellate cells in vitro. Eur. J. Pharmacol. 746, 56–62 (2015).

    CAS  PubMed  Google Scholar 

  166. Kim, Y. C. & Guan, K. L. mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest. 125, 25–32 (2015).

    PubMed  PubMed Central  Google Scholar 

  167. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kim, K. et al. S6 kinase 2 deficiency enhances ketone body production and increases peroxisome proliferator-activated receptor α activity in the liver. Hepatology 55, 1727–1737 (2012).

    CAS  PubMed  Google Scholar 

  169. Peterson, T. R. et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146, 408–420 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang, C. et al. Inflammatory stress increases hepatic CD36 translational efficiency via activation of the mTOR signalling pathway. PLoS ONE 9, e103071 (2014).

    PubMed  PubMed Central  Google Scholar 

  171. Ma, K. L. et al. Activation of mTOR modulates SREBP-2 to induce foam cell formation through increased retinoblastoma protein phosphorylation. Cardiovasc. Res. 100, 450–460 (2013).

    CAS  PubMed  Google Scholar 

  172. Sapp, V., Gaffney, L., EauClaire, S. F. & Matthews, R. P. Fructose leads to hepatic steatosis in zebrafish that is reversed by mechanistic target of rapamycin (mTOR) inhibition. Hepatology 60, 1581–1592 (2014). This study links diet-induced NASH to mTOR activation.

    CAS  PubMed  Google Scholar 

  173. Jiang, H., Westerterp, M., Wang, C., Zhu, Y. & Ai, D. Macrophage mTORC1 disruption reduces inflammation and insulin resistance in obese mice. Diabetologia 57, 2393–2404 (2014).

    CAS  PubMed  Google Scholar 

  174. Ai, D. et al. Disruption of mammalian target of rapamycin complex 1 in macrophages decreases chemokine gene expression and atherosclerosis. Circ. Res. 114, 1576–1584 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Li, S. et al. Role of S6K1 in regulation of SREBP1c expression in the liver. Biochem. Biophys. Res. Commun. 412, 197–202 (2011).

    CAS  PubMed  Google Scholar 

  176. Yuan, M. et al. Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J. Biol. Chem. 287, 29579–29588 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Kumar, A. et al. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 59, 1397–1406 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Lin, H. Y. et al. Effects of the mTOR inhibitor rapamycin on monocyte-secreted chemokines. BMC Immunol. 15, 37 (2014).

    PubMed  PubMed Central  Google Scholar 

  179. Inokuchi-Shimizu, S. et al. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J. Clin. Invest. 124, 3566–3578 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. González-Rodríguez, A. et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 5, e1179 (2014).

    PubMed  PubMed Central  Google Scholar 

  181. Wang, L. et al. ALCAT1 controls mitochondrial etiology of fatty liver diseases, linking defective mitophagy to steatosis. Hepatology 61, 486–496 (2015).

    CAS  PubMed  Google Scholar 

  182. Liu, K. et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy 11, 271–284 (2015).

    PubMed  PubMed Central  Google Scholar 

  183. Yin, J. et al. Rapamycin improves palmitate-induced ER stress/NFκB pathways associated with stimulating autophagy in adipocytes. Mediators Inflamm. 2015, 272313 (2015).

    PubMed  PubMed Central  Google Scholar 

  184. Sengupta, S., Peterson, T. R., Laplante, M., Oh, S. & Sabatini, D. M. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468, 1100–1104 (2010).

    CAS  PubMed  Google Scholar 

  185. Umemura, A. et al. Liver damage, inflammation, and enhanced tumorigenesis after persistent mTORC1 inhibition. Cell Metab. 20, 133–144 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Torricelli, C. et al. Phosphorylation-independent mTORC1 inhibition by the autophagy inducer Rottlerin. Cancer Lett. 360, 17–27 (2015).

    CAS  PubMed  Google Scholar 

  187. Zhang, J. et al. 2-(3-Benzoylthioureido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid ameliorates metabolic disorders in high-fat diet-fed mice. Acta Pharmacol. Sin. 36, 483–496 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Ozaki, E., Campbell, M. & Doyle, S. L. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J. Inflamm. Res. 8, 15–27 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Csak, T. et al. Both bone marrow-derived and non-bone marrow-derived cells contribute to AIM2 and NLRP3 inflammasome activation in a MyD88-dependent manner in dietary steatohepatitis. Liver Int. 34, 1402–1413 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Boaru, S. G., Borkham-Kamphorst, E., Tihaa, L., Haas, U. & Weiskirchen, R. Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease. J. Inflamm. (Lond) 9, 49 (2012).

    CAS  Google Scholar 

  191. Wree, A. et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J. Mol. Med. (Berl) 92, 1069–1082 (2014). This study links inflammasome activation to the development of liver fibrosis in NASH.

    CAS  Google Scholar 

  192. Wree, A. et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 59, 898–910 (2014).

    CAS  PubMed  Google Scholar 

  193. Dixon, L. J., Flask, C. A., Papouchado, B. G., Feldstein, A. E. & Nagy, L. E. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS ONE 8, e56100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Ioannou, G. N. et al. Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of NASH. J. Lipid Res. 56, 277–285 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Xu, C. et al. Xanthine oxidase in nonalcoholic fatty liver disease and hyperuricemia: one stone hits two birds. J. Hepatol. 62, 1412–1419 (2015).

    CAS  PubMed  Google Scholar 

  196. Miura, K. et al. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 57, 577–589 (2013).

    CAS  PubMed  Google Scholar 

  197. Patton, A. et al. Small molecule inhibitors of inflammation delay the progression of high-fat diet-induced nonalcoholic fatty liver disease in male C57BL6/J mice. American Diabetes Association [online], (2015).

    Google Scholar 

  198. Toki, Y. et al. Extracellular ATP induces P2X7 receptor activation in mouse Kupffer cells, leading to release of IL-1β, HMGB1, and PGE2, decreased MHC class I expression and necrotic cell death. Biochem. Biophys. Res. Commun. 458, 771–776 (2015).

    CAS  PubMed  Google Scholar 

  199. Honda, H. et al. Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. Leukoc. Biol. 96, 1087–1100 (2014).

    Google Scholar 

  200. Abderrazak, A. et al. Anti-inflammatory and anti-atherogenic effects of the inflammasome NLRP3 inhibitor arglabin in ApoE2.Ki mice fed a high fat diet. Circulation 131, 1061–1070 (2015).

    CAS  PubMed  Google Scholar 

  201. Isakov, E., Weisman-Shomer, P. & Benhar, M. Suppression of the pro-inflammatory NLRP3/interleukin-1β pathway in macrophages by the thioredoxin reductase inhibitor auranofin. Biochim. Biophys. Acta 1840, 3153–3161 (2014).

    CAS  PubMed  Google Scholar 

  202. Farooq, A. et al. Activation of N-methyl-d-aspartate receptor downregulates inflammasome activity and liver inflammation via a β-arrestin-2 pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G732–G740 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Ratziu, V. et al. A phase 2, randomized, double-blind, placebo-controlled study of GS-9450 in subjects with nonalcoholic steatohepatitis. Hepatology 55, 419–428 (2012).

    CAS  PubMed  Google Scholar 

  204. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Bartneck, M., Warzecha, K. T. & Tacke, F. Therapeutic targeting of liver inflammation and fibrosis by nanomedicine. Hepatobiliary Surg. Nutr. 3, 364–376 (2014).

    PubMed  PubMed Central  Google Scholar 

  206. Kufareva, I., Salanga, C. L. & Handel, T. M. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol. Cell Biol. 93, 372–383 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Zhang, X. et al. Hepatic CXCR3 promotes non-alcoholic steatohepatitis through inflammation, lipid accumulation and autophagy deficiency. Gastroenterology 146, S922 (2014).

    Google Scholar 

  208. Miura, K., Yang, L., van Rooijen, N., Ohnishi, H. & Seki, E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1310–G1321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Huang, W. et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes 59, 347–357 (2010).

    CAS  PubMed  Google Scholar 

  210. Tosello-Trampont, A. C., Landes, S. G., Nguyen, V., Novobrantseva, T. I. & Hahn, Y. S. Kupffer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production. J. Biol. Chem. 287, 40161–40172 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Wehr, A. et al. Pharmacological inhibition of the chemokine CXCL16 diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. PLoS ONE 9, e112327 (2014).

    PubMed  PubMed Central  Google Scholar 

  212. Karlmark, K. R. et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50, 261–274 (2009).

    CAS  PubMed  Google Scholar 

  213. Rouault, C. et al. Roles of chemokine ligand-2 (CXCL2) and neutrophils in influencing endothelial cell function and inflammation of human adipose tissue. Endocrinology 154, 1069–1079 (2013).

    CAS  PubMed  Google Scholar 

  214. Haukeland, J. W. et al. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J. Hepatol. 44, 1167–1174 (2006).

    CAS  PubMed  Google Scholar 

  215. Oh, D. Y. et al. Increased macrophage migration into adipose tissue in obese mice. Diabetes 61, 346–354 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Obstfeld, A. E. et al. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59, 916–925 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Kirk, E. A., Sagawa, Z. K., McDonald, T. O., O'Brien, K. D. & Heinecke, J. W. Monocyte chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue [corrected]. Diabetes 57, 1254–1261 (2008); erratum 57, 2552 (2008).

    CAS  PubMed  Google Scholar 

  218. Baeck, C. et al. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C+ macrophage infiltration in mice. Hepatology 59, 1060–1072 (2014).

    CAS  PubMed  Google Scholar 

  219. Seki, E. et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J. Clin. Invest. 119, 1858–1870 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Chu, P. S. et al. C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology 58, 337–350 (2013).

    CAS  PubMed  Google Scholar 

  221. Pérez-Martínez, L. et al. Maraviroc, a CCR5 antagonist, ameliorates the development of hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD). Antimicrob. Chemother. 69, 1903–1910 (2014).

    Google Scholar 

  222. Berres, M. L. et al. Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. J. Clin. Invest. 120, 4129–4140 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Lefebvre, E. et al. Anti-fibrotic and anti-inflammatory activity of the dual CCR2 and CCR5 antagonist cenicriviroc in a mouse model of NASH. Hepatology 58, 221A–222A (2013). This study provides experimental evidence for the anti-inflammatory and anti-fibrotic activity of cenicriviroc.

    Google Scholar 

  224. Van Raemdonck, K., Van den Steen, P. E., Liekens, S., Van Damme, J. & Struyf, S. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev. 26, 311–327 (2015).

    CAS  PubMed  Google Scholar 

  225. Wehr, A. et al. Chemokine receptor CXCR6-dependent hepatic NK T cell accumulation promotes inflammation and liver fibrosis. J. Immunol. 190, 5226–5236 (2013).

    CAS  PubMed  Google Scholar 

  226. Hammerich, L. et al. Chemokine receptor CCR6-dependent accumulation of γδ T cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology 59, 630–642 (2014).

    CAS  PubMed  Google Scholar 

  227. Karlmark, K. R. et al. The fractalkine receptor CX3CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology 52, 1769–1782 (2010).

    CAS  PubMed  Google Scholar 

  228. Czaja, A. J. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J. Gastroenterol. 20, 2515–2532 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Bozinovski, S., Anthony, D. & Vlahos, R. Targeting pro-resolution pathways to combat chronic inflammation in COPD. J. Thorac. Dis. 6, 1548–1556 (2014).

    PubMed  PubMed Central  Google Scholar 

  230. Qin, C. et al. Cardioprotective potential of annexin-A1 mimetics in myocardial infarction. Pharmacol. Ther. 148, 47–65 (2015).

    CAS  PubMed  Google Scholar 

  231. Vago, J. P. et al. Annexin A1 modulates natural and glucocorticoid-induced resolution of inflammation by enhancing neutrophil apoptosis. J. Leukoc. Biol. 92, 249–258 (2012).

    CAS  PubMed  Google Scholar 

  232. Leoni, G. et al. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J. Clin. Invest. 123, 443–454 (2013).

    CAS  PubMed  Google Scholar 

  233. Trentin, P. G. et al. Annexin A1-mimetic peptide controls the inflammatory and fibrotic effects of silica particles in mice. Br. J. Pharmacol. 172, 3058–3071 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Locatelli, I. et al. Endogenous annexin A1 is a novel protective determinant in nonalcoholic steatohepatitis in mice. Hepatology 60, 531–544 (2014).

    CAS  PubMed  Google Scholar 

  235. Kosicka, A. et al. Attenuation of plasma annexin A1 in human obesity. FASEB J. 27, 368–378 (2013).

    CAS  PubMed  Google Scholar 

  236. Akasheh, R. T., Pini, M., Pang, J. & Fantuzzi, G. Increased adiposity in annexin A1-deficient mice. PLoS ONE 8, e82608 (2013).

    PubMed  PubMed Central  Google Scholar 

  237. Dalli, J. et al. Proresolving and tissue-protective actions of annexin A1-based cleavage-resistant peptides are mediated by formyl peptide receptor 2/lipoxin A4 receptor. J. Immunol. 190, 6478–6487 (2013).

    CAS  PubMed  Google Scholar 

  238. Kamaly, N. et al. Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proc. Natl Acad. Sci. USA 110, 6506–6511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Krishnamoorthy, S. et al. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc. Natl Acad. Sci. USA 107, 1660–1665 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Claria, J., Dalli, J., Yacoubian, S., Gao, F. & Serhan, C. N. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat. J. Immunol. 189, 2597–2605 (2012).

    CAS  PubMed  Google Scholar 

  241. Psychogios, N. et al. The human serum metabolome. PLoS ONE 6, e16957 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Hsieh, W. C. et al. Galectin-3 regulates hepatic progenitor cell expansion during liver injury. Gut 64, 312–321 (2015).

    CAS  PubMed  Google Scholar 

  243. Kain, V. et al. Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. J. Mol. Cell. Cardiol. 84, 24–35 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Jung, T. W. et al. Resolvin D1 reduces ER stress-induced apoptosis and triglyceride accumulation through JNK pathway in HepG2 cells. Mol. Cell. Endocrinol. 391, 30–40 (2014).

    CAS  PubMed  Google Scholar 

  245. Rius, B. et al. Resolvin D1 primes the resolution process initiated by calorie restriction in obesity-induced steatohepatitis. FASEB J. 28, 836–848 (2014).

    CAS  PubMed  Google Scholar 

  246. Orr, S. K., Colas, R. A., Dalli, J., Chiang, N. & Serhan, C. N. Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L904–L911 (2015).

    PubMed  PubMed Central  Google Scholar 

  247. Lacobini, C. et al. Accelerated lipid-induced atherogenesis in galectin-3-deficient mice: role of lipoxidation via receptor-mediated mechanisms. Arterioscler. Thromb. Vasc. Biol. 29, 831–836 (2009).

    Google Scholar 

  248. Pugliese, G., Iacobini, C., Pesce, C. M. & Menini, C. M. Galecin-3; an emerging all-out player in metabolic disorders and their complications. Glycobiology 25, 136–150 (2015).

    CAS  PubMed  Google Scholar 

  249. Yang, R. Y., Hsu, D. K. & Liu, F. T. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc. Natl Acad. Sci. USA 93, 6737–6742 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Elad-Sfadia, G., Haklai, R., Balan, E. & Kloog, Y. Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J. Biol. Chem. 279, 34922–34930 (2004).

    CAS  PubMed  Google Scholar 

  251. Oka, N. et al. Galectin-3 inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by activating Akt in human bladder carcinoma cells. Cancer Res. 65, 7546–7553 (2005).

    CAS  PubMed  Google Scholar 

  252. Park, J. W., Voss, P. G., Grabski, S., Wang, J. L. & Patterson, R. J. Association of galectin-1 and galectin-3 with Gemin4 in complexes containing the SMN protein. Nucleic Acids Res. 29, 3595–3602 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Shimura, T. et al. Implication of galectin-3 in Wnt signaling. Cancer Res. 65, 3535–3537 (2005).

    CAS  PubMed  Google Scholar 

  254. Lau, K. S. et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129, 123–134 (2007).

    CAS  PubMed  Google Scholar 

  255. Fukumori, T. et al. CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res. 63, 8302–8311 (2003).

    CAS  PubMed  Google Scholar 

  256. Gao, X., Balan, V., Tai, G. & Raz, A. Galectin-3 induces cell migration via a calcium-sensitive MAPK/ERK1/2 pathway. Oncotarget 5, 2077–2084 (2014).

    PubMed  PubMed Central  Google Scholar 

  257. Volarevic, V. et al. Gal-3 regulates the capacity of dendritic cells to promote NKT-cell-induced liver injury. Eur. J. Immunol. 45, 531–543 (2015).

    CAS  PubMed  Google Scholar 

  258. Iacobini, C. et al. Galectin-3 ablation protects mice from diet-induced NASH: a major scavenging role for galectin-3 in liver. J. Hepatol. 54, 975–983 (2011). This proof-of-concept study provides evidence that galectin 3 ablation is an effective strategy for treatment of NASH.

    CAS  PubMed  Google Scholar 

  259. Henderson, N. C. et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc. Natl Acad. Sci. USA 103, 5060–5065 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. DePeralta, D. K. et al. Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma. Hepatology 59, 1577–1590 (2014).

    PubMed  Google Scholar 

  261. Maeda, N. et al. Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways. J. Biol. Chem. 278, 189–144 (2003).

    Google Scholar 

  262. Jeftic, I. et al. Galectin-3 ablation enhances liver steatosis, but attenuates inflammation and IL-33 dependent fibrosis in obesogenic mouse model of nonalcoholic steatohepatitis. Mol. Med. 21, 453–465 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Traber, P. G. & Zomer, E. Therapy of experimental NASH and fibrosis with galectin inhibitors. PLoS ONE 8, e83481 (2013).

    PubMed  PubMed Central  Google Scholar 

  264. Traber, P. G. et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS ONE 8, e75361 (2013). This study provides evidence of cirrhosis regression with pharmacological galectin 3 inhibition.

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Harrison, S. A. et al. Early phase 1 clinical trial results of GR-MD-02, a galectin-3 inhibitor, in patients having non-alcoholic steatohepatitis (NASH) with advanced fibrosis. BVS [online], (2014).

    Google Scholar 

  266. Lacobini, C. et al. Advanced lipoxidation end-products mediate lipid-induced glomerular injury: role of receptor-mediated mechanisms. J. Pathol. 218, 360–369 (2009).

    Google Scholar 

  267. Pejnovic, N. et al. Galectin-3 deficiency accelerates high-fat diet induced obesity and amplifies inflammation in adipose tissue and pancreatic islets. Diabetes 62, 1932–1944 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Pang, J. et al. Increased adiposity, dysregulated glucose metabolism and systemic inflammation in galectin-3 KO mice. PLoS ONE 8, e57915 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Smedsrød, B., Melkko, J., Araki, N., Sano, H. & Horiuchi, S. Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells. Biochem. J. 322, 567–573 (1997).

    PubMed  PubMed Central  Google Scholar 

  270. Horrillo, R. et al. 5-lipoxygenase activating protein signals adipose tissue inflammation and lipid dysfunction in experimental obesity. J. Immunol. 184, 3978–3987 (2010).

    CAS  PubMed  Google Scholar 

  271. Martinez-Clemente, M. et al. 5-lipoxygenase deficiency reduces hepatic inflammation and tumor necrosis factor α-induced hepatocyte damage in hyperlipidemia-prone ApoE-null mice. Hepatology 51, 817–827 (2010).

    CAS  PubMed  Google Scholar 

  272. Moon, H. J., Finney, J., Ronnebaum, T. & Mure, M. Human lysyl oxidase-like 2. Bioorg. Chem. 57, 231–241 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Moon, H. J. et al. MCF-7 cells expressing nuclear associated lysyl oxidase-like 2 (LOXL2) exhibit an epithelial-to-mesenchymal transition (EMT) phenotype and are highly invasive in vitro. J. Biol. Chem. 288, 30000–30008 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Perepelyuk, M. et al. Hepatic stellate cells and portal fibroblasts are the major cellular sources of collagens and lysyl oxidases in normal liver and early after injury. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G605–G614 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Barry-Hamilton, V. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 1009–1017 (2010).

    CAS  PubMed  Google Scholar 

  276. Talal, A. H. et al. Simtuzumab, an antifibrotic monoclonal antibody against lylyl oxidase-like 2(LOXL2) enzyme, appears safe and well-tolerated in patients with liver disease of diverse etiology. J. Hepatol. 58, S532 (2013).

    Google Scholar 

  277. Rådmark, O., Werz, O., Steinhilber, D. & Samuelsson, B. 5-lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim. Biophys. Acta 1851, 331–339 (2015).

    PubMed  Google Scholar 

  278. Titos, E. et al. Inhibition of 5-lipoxygenase induces cell growth arrest and apoptosis in rat Kupffer cells: implications for liver fibrosis. FASEB J. 17, 1745–1747 (2003).

    CAS  PubMed  Google Scholar 

  279. Matsuda, K & Iwak, Y. MN-001 (tipelukast), a novel, orally bioavailable drug, reduces fibrosis and inflammation and down-regulates TIMP-1, collagen Type 1 and LOXL2 mRNA overexpression in an advanced NASH (nonalcoholic steatohepatitis) model. Hepatology 60, 1283A (2014).

    Google Scholar 

  280. Hirsova, P. & Gores, G. J. Death receptor-mediated cell death and proinflammatory signaling in nonalcoholic steatohepatitis. Cell. Mol. Gastroenterol. Hepatol. 1, 17–27 (2015).

    PubMed  Google Scholar 

  281. Wieckowska, A. et al. In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology 44, 27–33 (2006).

    CAS  PubMed  Google Scholar 

  282. Kim, K. H., Chen, C. C., Monzon, R. I. & Lau, L. F. Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol. Cell. Biol. 33, 2078–2090 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Hatting, M. et al. Hepatocyte caspase-8 is an essential modulator of steatohepatitis in rodents. Hepatology 57, 2189–2201 (2013).

    CAS  PubMed  Google Scholar 

  284. Barreyro, F. J. et al. The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int. 35, 953–966 (2015).

    CAS  PubMed  Google Scholar 

  285. Spada, A. P. et al. Rapid and statistically significant reduction of markers of apoptosis and cell death in subjects with mild, moderate and severe hepatic impairment treated with a single dose of the pan caspase inhibitor, emricasan. Hepatology 60, 1277A (2014).

    Google Scholar 

  286. Xiao, Z., Ko, H. L., Goh, E. H., Wang, B. & Ren, E. C. hnRNP K suppresses apoptosis independent of p53 status by maintaining high levels of endogenous caspase inhibitors. Carcinogenesis 34, 1458–1467 (2013).

    CAS  PubMed  Google Scholar 

  287. Hu, L., Lin, X., Lu, H., Chen, B. & Bai, Y. An overview of hedgehog signaling in fibrosis. Mol. Pharmacol. 87, 174–182 (2015).

    PubMed  Google Scholar 

  288. Guy, C. D. et al. Treatment response in the PIVENS trial is associated with decreased Hedgehog pathway activity. Hepatology 61, 98–107 (2015).

    CAS  PubMed  Google Scholar 

  289. Choi, S. S. et al. Activation of Rac1 promotes hedgehog-mediated acquisition of the myofibroblastic phenotype in rat and human hepatic stellate cells. Hepatology 52, 278–290 (2010).

    CAS  PubMed  Google Scholar 

  290. Syn, W. K. et al. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 51, 1998–2007 (2010).

    CAS  PubMed  Google Scholar 

  291. Philips, G. M. et al. Hedgehog signaling antagonist promotes regression of both liver fibrosis and hepatocellular carcinoma in a murine model of primary liver cancer. PLoS ONE 6, e23943 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Hirsova, P., Ibrahim, S. H., Bronk, S. F., Yagita, H. & Gores, G. J. Vismodegib suppresses TRAIL-mediated liver injury in a mouse model of nonalcoholic steatohepatitis. PLoS ONE 8, e70599 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Kumar, V., Mundra, V. & Mahato, R. I. Nanomedicines of Hedgehog inhibitor and PPAR-γ agonist for treating liver fibrosis. Pharm. Res. 31, 1158–1169 (2014). This study provides evidence that vismodegib-encapsulating nanoparticles effectively reverse NASH and fibrosis.

    CAS  PubMed  Google Scholar 

  294. Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Jun, J. I. & Lau L. F. Cellular senescence controls fibrosis in wound healing. Aging 2, 627–631 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Borkham-Kamphorst, E. et al. The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-β signaling. Biochim. Biophys. Acta 1843, 902–914 (2014).

    CAS  PubMed  Google Scholar 

  297. Stiuso, P. et al. Serum oxidative stress markers and lipidomic profile to detect NASH patients responsive to an antioxidant treatment: a pilot study. Oxid Med. Cell. Longev. 2014, 169216 (2014).

    PubMed  PubMed Central  Google Scholar 

  298. Torok, N. J., Dranoff, J. A., Schuppan, D. & Friedman, S. L. Strategies and endpoints of antifibrotic drug trials: summary and recommendations from the AASLD Emerging Trends Conference, Chicago, June 2014. Hepatology 62, 627–634 (2014).

    Google Scholar 

  299. Hardwick, R. N., Fisher, C. D., Canet, M. J., Lake, A. D. & Cherrington, N. J. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab. Dispos. 38, 2293–2301 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Musso.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Mechanisms of action of natural antioxidants for the treatment of NAFLD (panel A) and main studies assessing the effect of resveratrol on markers of NAFLD (panel B). (PDF 245 kb)

Glossary

Steatosis

Hepatic fatty infiltration in which the total fat content of the liver exceeds 5%.

Steatohepatitis

A liver disease characterized by steatosis, inflammation, ballooning and degeneration of hepatocytes and varying degrees of fibrosis.

Cirrhosis

A condition caused by long-standing liver injury from a variety of causes, which results in liver dysfunction, liver scarring with perturbed architecture and portal hypertension.

Hepatic stellate cell

A liver-resident cell that is predominantly responsible for liver fibrosis.

Methionine–choline-deficient diet

A dietary model of non-alcoholic steatohepatitis (NASH) that involves the administration of a diet with low levels of methionine and choline. Unlike other models of NASH, mice fed a methionine–choline-deficient diet do not develop insulin resistance.

Nonparenchymal cells

Liver cells other than hepatocytes, including different populations of immune, inflammatory and pro-fibrogenic cells.

M1 phenotype

One of two distinct functional states of polarized macrophage activation, the M1 macrophage subtype shows a 'pro-inflammatory' cytokine and chemokine profile.

M2 phenotype

One of two distinct functional states of polarized macrophage activation, the M2 macrophage has an 'anti-inflammatory' cytokine and chemokine profile and is involved in immunosuppression and tissue repair. Importantly, in vitro, macrophages are capable of complete repolarization from M2 to M1 and can change again in response to fluctuations in the cytokine environment. The change in polarization is rapid and alters gene expression, protein and metabolite levels and microbicidal activity.

Inflammasome

A multiprotein oligomer consisting of caspase 1, pyrin domain- and CARD-containing protein (PYCARD), a NOD-, LRR- and pyrin domain-containing protein and sometimes caspase 5 (also known as caspase 11). The exact composition of an inflammasome depends on which activator initiates inflammasome assembly. The inflammasome promotes the maturation of the inflammatory cytokines interleukin 1β (IL-1β) and IL-18 and is responsible for the activation of inflammatory processes in diverse cell lines.

Epithelial-to-mesenchymal transition

A cellular process in which epithelial ductular-like cells disassemble the cell-to-cell attachments that tether them to adjacent cells and acquire a mesenchymal phenotype that allows them to migrate into the stroma, proliferate and synthesize extracellular matrix in response to various growth factors and cytokines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musso, G., Cassader, M. & Gambino, R. Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nat Rev Drug Discov 15, 249–274 (2016). https://doi.org/10.1038/nrd.2015.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2015.3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research