Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Model organisms

Animal Models of sepsis: setting the stage

Key Points

  • Sepsis remains a major cause of morbidity and mortality in human patients despite active research. The pathogenesis of sepsis involves a dysregulated balance of pro- and anti-inflammatory mediators. The evolving definition of sepsis makes clinical therapeutic trials difficult to capture a homogeneous patient sample.

  • Animal models of sepsis have been used to study sepsis pathogenesis and assess efficacy of potential therapeutic agents. Unfortunately, agents successful in animal model studies have rarely proven successful in large human clinical studies.

  • There are three main classes of sepsis animal models: toxaemia models (for example, lipopolysaccharide (LPS) infusion); bacterial infection models (for example, intravenous or intraperitoneal Escherichia coli infusion); and host-barrier disruption models (for example, caecal ligation and puncture (CLP) and colon ascendens stent peritonitis (CASP)). No individual model is a perfect vehicle for drug therapy testing and complementary model use is optimal for studies on therapy mechanisms.

  • The preclinical studies of anti-TNF and activated protein C therapy demonstrate diverse use of animal models. These studies suggest that testing of preclinical therapeutic agents did not always correlate with human clinical trial data as expected.

  • Clinical studies indicate that sepsis drug therapy efficacy might depend on the severity of sepsis. This hypothesis has been supported by sepsis animal model studies, which indicate that animal models could benefit from better efforts to stage the severity of disease during both mechanism and drug efficacy studies. Better staging of animal models will improve our knowledge of sepsis pathogenesis, better the ability to deliver targeted drug therapy depending on an individual inflammatory bias, and allow more focused clinical trials.

Abstract

Sepsis is a state of disrupted inflammatory homeostasis that is often initiated by infection. The development and progression of sepsis is multi-factorial, and affects the cardiovascular, immunological and endocrine systems of the body. The complexity of sepsis makes the clinical study of sepsis and sepsis therapeutics difficult. Animal models have been developed in an effort to create reproducible systems for studying sepsis pathogenesis and preliminary testing of potential therapeutic agents. However, demonstrated benefit from a therapeutic agent in animal models has rarely been translated into success in human clinical trials. This review summarizes the common animal sepsis models and highlights how results of recent human clinical trials might affect their use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sepsis pathogenesis.
Figure 2: SIRS and CARS in sepsis.
Figure 3: Experimental models of sepsis: caecal ligation and puncture (CLP) and colon ascendens stent peritonitis (CASP).

Similar content being viewed by others

References

  1. Angus, D. C. et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29, 1303–1310 (2001). An excellent overview of sepsis epidemiology and associated health-care costs within the United States.

    Article  CAS  PubMed  Google Scholar 

  2. Panacek, E. A. et al. Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F(ab')2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Crit. Care Med. 32, 2173–2182 (2004). The first successful clinical trial to utilize an endogenous biomarker (IL-6) to stratify patients. Prospectively demonstrated that more accurate patient selection was required to show benefit from therapy

    Article  CAS  PubMed  Google Scholar 

  3. Natanson, C., Hoffman, W. D., Suffredini, A. F., Eichacker, P. Q. & Danner, R. L. Selected treatment strategies for septic shock based on proposed mechanisms of pathogenesis. Ann. Intern. Med. 120, 771–783 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Riedemann, N. C., Guo, R. F. & Ward, P. A. The enigma of sepsis. J. Clin. Invest. 112, 460–467 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marshall, J. C. Such stuff as dreams are made on: mediator-directed therapy in sepsis. Nature Rev. Drug Discov. 2, 391–405 (2003). An excellent review of sepsis therapies and human clinical trials.

    Article  CAS  Google Scholar 

  6. Zeni, F., Freeman, B. & Natanson, C. Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Crit. Care Med. 25, 1095–1100 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Sitkovsky, M. V. & al., e. Physiological control of immune response and inflammatory tissue damage by hypoxia inducible factors and adenosine A2A receptors. Annu. Rev. Immunol. 22, 2101–2126 (2004).

    Article  CAS  Google Scholar 

  8. Freeman, B. D. et al. Role of CuZn superoxide dismutase in regulating lymphocyte apoptosis during sepsis. Crit. Care Med. 28, 1701–1708 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, H. et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl Acad. Sci. USA 101, 296–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Ward, P. A. The dark side of C5a in sepsis. Nature Rev. Immunol. 4, 133–142 (2004).

    Article  CAS  Google Scholar 

  11. Akira, S. & Hemmi, H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett. 85, 85–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Beutler, B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263 (2004).

    Article  CAS  Google Scholar 

  13. Bone, R. C. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit. Care Med. 24, 1125–1128 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Ulloa, L. & Tracey, K. J. The 'cytokine profile': a code for sepsis. Trends Mol. Med. 11, 56–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Bone, R. C. et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101, 1644–1655 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Levy, M. M. et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 31, 1250–1256 (2003). The updated clinical definitions of human sepsis and suggestion that further improvements are required for the staging of human sepsis.

    Article  PubMed  Google Scholar 

  17. Opal, S. M. The uncertain value of the definition for SIRS. Systemic inflammatory response syndrome. Chest 113, 1442–1443 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Cohen, J. et al. New strategies for clinical trials in patients with sepsis and septic shock. Crit. Care Med. 29, 880–886 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Bernard, G. R. et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 344, 699–709 (2001). The first large-scale clinical trial defining benefit of a sepsis therapeutic agent and responsible for FDA approval of drotecogin alfa activated.

    Article  CAS  PubMed  Google Scholar 

  20. Wichterman, K. A., Baue, A. E. & Chaudry, I. H. Sepsis and septic shock-a review of laboratory models and a proposal. J. Surg. Res. 29, 189–201 (1980). This publication defined the CLP animal model and established it as a valid model to mimic sepsis progression in humans.

    Article  CAS  PubMed  Google Scholar 

  21. Fink, M. P. & Heard, S. O. Laboratory models of sepsis and septic shock. J. Surg. Res. 49, 186–196 (1990). An excellent review of sepsis animal models, particularly with respect to the endotoxin shock model.

    Article  CAS  PubMed  Google Scholar 

  22. Deitch, E. A. Animal models of sepsis and shock: a review and lessons learned. Shock 9, 1–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Esmon, C. T. Why do animal models (sometimes) fail to mimic human sepsis? Crit. Care Med. 32, S219–S222 (2004).

    Article  PubMed  Google Scholar 

  24. Parker, M. M. & Parrillo, J. E. Septic shock. Hemodynamics and pathogenesis. JAMA 250, 3324–3327 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Abraham, E., Shoemaker, W. C., Bland, R. D. & Cobo, J. C. Sequential cardiorespiratory patterns in septic shock. Crit. Care Med. 11, 799–803 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Groeneveld, A. B., Bronsveld, W. & Thijs, L. G. Hemodynamic determinants of mortality in human septic shock. Surgery 99, 140–153 (1986).

    CAS  PubMed  Google Scholar 

  27. Parker, M. M. et al. Profound but reversible myocardial depression in patients with septic shock. Ann. Intern. Med. 100, 483–490 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Parker, M. M., Shelhamer, J. H., Natanson, C., Alling, D. W. & Parrillo, J. E. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit. Care Med. 15, 923–929 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Ayala, A., Herdon, C. D., Lehman, D. L., Ayala, C. A. & Chaudry, I. H. Differential induction of apoptosis in lymphoid tissues during sepsis: variation in onset, frequency, and the nature of the mediators. Blood 87, 4261–4275 (1996).

    CAS  PubMed  Google Scholar 

  30. Hotchkiss, R. S., Tinsley, K. W. & Karl, I. E. Role of apoptotic cell death in sepsis. Scand. J. Infect. Dis. 35, 585–592 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. van der Poll, T. & van Deventer, S. J. Cytokines and anticytokines in the pathogenesis of sepsis. Infect. Dis. Clin. North. Am. 13, 413–426 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Sparwasser, T. et al. Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-α-mediated shock. Eur. J. Immunol. 27, 1671–1679 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Meng, G. et al. Antagonistic antibody prevents toll-like receptor 2-driven lethal shock-like syndromes. J. Clin. Invest. 113, 1473–1481 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Galanos, C., Freudenberg, M. A. & Reutter, W. Galactosamine-induced sensitization ot the lethal effects of endotoxin. Proc. Natl. Acad. Sci. USA 76, 5939–5943 (1979).

    Article  CAS  PubMed  Google Scholar 

  36. Beutler, B. & Poltorak, A. Sepsis and evolution of the innate immune response. Crit. Care Med. 29, S2–S6 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Cohen, J. The immunopathogenesis of sepsis. Nature 420, 885–891 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Pfeffer, K. et al. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73, 457–467 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Rothe, J. et al. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364, 798–802 (1993).

    Article  CAS  Google Scholar 

  40. Bozza, M. et al. Targeted disruption of migration inhibitory factor gene reveals its critical role in sepsis. J. Exp. Med. 189, 341–346 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu, H. et al. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J. Exp. Med. 180, 95–109 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Ayala, A., Deol, Z. K., Lehman, D. L., Herdon, C. D. & Chaudry, I. H. Polymicrobial sepsis but not low-dose endotoxin infusion causes decreased splenocyte IL-2/IFN-γ release while increasing IL-4/IL-10 production. J. Surg. Res. 56, 579–585 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Ayala, A., Song, G. Y., Chung, C. S., Redmond, K. M. & Chaudry, I. H. Immune depression in polymicrobial sepsis: the role of necrotic (injured) tissue and endotoxin. Crit. Care Med. 28, 2949–2955 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Remick, D. G., Newcomb, D. E., Bolgos, G. L. & Call, D. R. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock 13, 110–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Zantl, N. et al. Essential role of γ-interferon in survival of colon ascendens stent peritonitis, a novel murine model of abdominal sepsis. Infect. Immun. 66, 2300–2309 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Copeland, S., Warren, H. S., Lowry, S. F., Calvano, S. E. & Remick, D. Acute inflammatory response to endotoxin in mice and humans. Clin. Diagn. Lab. Immunol. 12, 60–67 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cross, A. S., Opal, S. M., Sadoff, J. C. & Gemski, P. Choice of bacteria in animal models of sepsis. Infect. Immun. 61, 2741–2747 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rubins, J. B. & Pomeroy, C. Role of γ-interferon in the pathogenesis of bacteremic pneumococcal pneumonia. Infect. Immun. 65, 2975–2977 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sawa, T. et al. IL-10 improves lung injury and survival in Pseudomonas aeruginosa pneumonia. J. Immunol. 159, 2858–2866 (1997).

    CAS  PubMed  Google Scholar 

  50. Kohler, J. et al. IFN-γ involvement in the severity of gram-negative infections in mice. J. Immunol. 151, 916–921 (1993).

    CAS  PubMed  Google Scholar 

  51. Sasaki, S. et al. Interleukin-4 and interleukin-10 are involved in host resistance to Staphylococcus aureus infection through regulation of γ-interferon. Infect. Immun. 68, 2424–2430 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Silva, A. T. & Cohen, J. Role of interferon-γ in experimental gram-negative sepsis. J. Infect. Dis. 166, 331–335 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Zanetti, G. et al. Cytokine production after intravenous or peritoneal gram-negative bacterial challenge in mice. Comparative protective efficacy of antibodies to tumor necrosis factor-α and to lipopolysaccharide. J. Immunol. 148, 1890–1897 (1992).

    CAS  PubMed  Google Scholar 

  54. Evans, G. F., Snyder, Y. M., Butler, L. D. & Zuckerman, S. H. Differential expression of interleukin-1 and tumor necrosis factor in murine septic shock models. Circ. Shock 29, 279–290 (1989).

    CAS  PubMed  Google Scholar 

  55. Greenberger, M. J. et al. Neutralization of IL-10 increases survival in a murine model of Klebsiella pneumonia. J. Immunol. 155, 722–729 (1995).

    CAS  PubMed  Google Scholar 

  56. van der Poll, T., Marchant, A., Keogh, C. V., Goldman, M. & Lowry, S. F. Interleukin-10 impairs host defense in murine pneumococcal pneumonia. J. Infect. Dis. 174, 994–1000 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. van der Poll, T. et al. Endogenous IL-10 protects mice from death during septic peritonitis. J. Immunol. 155, 5397–5401 (1995).

    CAS  PubMed  Google Scholar 

  58. Moore, T. A., Perry, M. L., Getsoian, A. G., Newstead, M. W. & Standiford, T. J. Divergent role of γ-interferon in a murine model of pulmonary versus systemic Klebsiella pneumoniae infection. Infect. Immun. 70, 6310–6318 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mizrachi-Nebenzahl, Y. et al. Differential activation of the immune system by virulent Streptococcus pneumoniae strains determines recovery or death of the host. Clin. Exp. Immunol. 134, 23–31 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Parker, S. J. & Watkins, P. E. Experimental models of gram-negative sepsis. Br. J. Surg. 88, 22–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Remick, D. G., Bolgos, G., Copeland, S. & Siddiqui, J. Role of interleukin-6 in mortality from and physiologic response to sepsis. Infect. Immun. 73, 2751–2757 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Remick, D. G., Bolgos, G. R., Siddiqui, J., Shin, J. & Nemzek, J. A. Six at six: interleukin-6 measured 6 h after the initiation of sepsis predicts mortality over 3 days. Shock 17, 463–467 (2002). The first animal study to demonstrate the ability of an endogenous inflammatory mediator to predict survival.

    Article  PubMed  Google Scholar 

  63. Latifi, S. Q., O'Riordan, M. A. & Levine, A. D. Interleukin-10 controls the onset of irreversible septic shock. Infect. Immun. 70, 4441–4446 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ayala, A. & Chaudry, I. H. Immune dysfunction in murine polymicrobial sepsis: mediators, macrophages, lymphocytes and apoptosis. Shock 6 (Suppl. 1), S27–S38 (1996).

    Article  PubMed  Google Scholar 

  65. Maier, S. et al. Cecal ligation and puncture versus colon ascendens stent peritonitis: two distinct animal models for polymicrobial sepsis. Shock 21, 505–511 (2004). An excellent direct comparison of the CLP and CASP sepsis models.

    Article  PubMed  Google Scholar 

  66. Oberholzer, A. et al. Increased survival in sepsis by in vivo adenovirus-induced expression of IL-10 in dendritic cells. J. Immunol. 168, 3412–3418 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Baker, C. C., Chaudry, I. H., Gaines, H. O. & Baue, A. E. Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model. Surgery 94, 331–335 (1983).

    CAS  PubMed  Google Scholar 

  68. Singleton, K. D. & Wischmeyer, P. E. Distance of cecum ligated influences mortality, tumor necrosis factor-α and interleukin-6 expression following cecal ligation and puncture in the rat. Eur. Surg. Res. 35, 486–491 (2003). This work was first to document the subtle contribution of the amount of cecal tissue ligated towards the severity of sepsis in the CLP model.

    Article  CAS  PubMed  Google Scholar 

  69. Turnbull, I. R. et al. Antibiotics improve survival in sepsis independent of injury severity but do not change mortality in mice with markedly elevated interleukin 6 levels. Shock 21, 121–125 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Heuer, J. G. et al. Evaluation of protein C and other biomarkers as predictors of mortality in a rat cecal ligation and puncture model of sepsis. Crit. Care Med. 32, 1570–1578 (2004). An excellent recent study evaluating the ability of several biomarkers to predict mortality from CLP sepsis.

    Article  CAS  PubMed  Google Scholar 

  71. Feterowski, C. et al. CC chemokine receptor 2 regulates leukocyte recruitment and IL-10 production during acute polymicrobial sepsis. Eur. J. Immunol. 34, 3664–3673 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Emmanuilidis, K. et al. Critical role of Kupffer cell-derived IL-10 for host defense in septic peritonitis. J. Immunol. 167, 3919–3927 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Weighardt, H. et al. Cutting edge: myeloid differentiation factor 88 deficiency improves resistance against sepsis caused by polymicrobial infection. J. Immunol. 169, 2823–2827 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Feterowski, C. et al. Effects of functional Toll-like receptor-4 mutations on the immune response to human and experimental sepsis. Immunology 109, 426–431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Entleutner, M. et al. Impact of interleukin-12, oxidative burst, and iNOS on the survival of murine fecal peritonitis. Int. J. Colorectal Dis. 9 March 2005 [epub ahead of print].

  76. Hensler, T. et al. Increased susceptibility to postoperative sepsis in patients with impaired monocyte IL-12 production. J. Immunol. 161, 2655–2659 (1998).

    CAS  PubMed  Google Scholar 

  77. Weighardt, H. et al. Impaired monocyte IL-12 production before surgery as a predictive factor for the lethal outcome of postoperative sepsis. Ann. Surg. 235, 560–567 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Biondo, S. et al. Prognostic factors for mortality in left colonic peritonitis: a new scoring system. J. Am. Coll. Surg. 191, 635–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Echtenacher, B., Falk, W., Mannel, D. N. & Krammer, P. H. Requirement of endogenous tumor necrosis factor/cachectin for recovery from experimental peritonitis. J. Immunol. 145, 3762–3766 (1990).

    CAS  PubMed  Google Scholar 

  80. Echtenacher, B., Mannel, D. N. & Hultner, L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381, 75–77 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Echtenacher, B., Freudenberg, M. A., Jack, R. S. & Mannel, D. N. Differences in innate defense mechanisms in endotoxemia and polymicrobial septic peritonitis. Infect. Immun. 69, 7271–7276 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Echtenacher, B., Weigl, K., Lehn, N. & Mannel, D. N. Tumor necrosis factor-dependent adhesions as a major protective mechanism early in septic peritonitis in mice. Infect. Immun. 69, 3550–3555 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Michie, H. R. et al. Detection of circulating tumor necrosis factor after endotoxin administration. N. Engl. J. Med. 318, 1481–1486 (1988).

    Article  CAS  PubMed  Google Scholar 

  84. Tracey, K. J. et al. Shock and tissue injury induced by recombinant human cachectin. Science 234, 470–474 (1986).

    Article  CAS  PubMed  Google Scholar 

  85. Tracey, K. J. et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330, 662–664 (1987).

    Article  CAS  PubMed  Google Scholar 

  86. Eskandari, M. K. et al. Anti-tumor necrosis factor antibody therapy fails to prevent lethality after cecal ligation and puncture or endotoxemia. J. Immunol. 148, 2724–2730 (1992).

    CAS  PubMed  Google Scholar 

  87. Alexander, H. R. et al. Treatment with recombinant human tumor necrosis factor-α protects rats against the lethality, hypotension, and hypothermia of gram-negative sepsis. J. Clin. Invest. 88, 34–39 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fisher, C. J. Jr. et al. Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N. Engl. J. Med. 334, 1697–1702 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Eichacker, P. Q. et al. Risk and the efficacy of antiinflammatory agents: retrospective and confirmatory studies of sepsis. Am. J. Respir. Crit. Care Med. 166, 1197–1205 (2002). This outstanding study introduced the concept that the degree of sepsis severity affected the host response to exogenous anti-inflammatory therapy.

    Article  PubMed  Google Scholar 

  90. Shua, F. et al. Activated protein C suppresses tissue factor expression on U937 cells in the endothelial protein C receptor-dependent manner. FEBS Lett. 477, 208–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Sakata, Y., Loskutoff, D. J., Gladson, C. L., Hekman, C. M. & Griffin, J. H. Mechanism of protein C-dependent clotlysis: role of plasminogen activator inhibitor. Blood 68, 1218–1223 (1986).

    CAS  PubMed  Google Scholar 

  92. Schmidt-Supprian, M. et al. Activated protein C inhibits tumor necrosis factor and macrophage migration inhibitory factor production in monocytes. Eur. Cytokine Netw. 11, 407–413 (2000).

    CAS  PubMed  Google Scholar 

  93. Murakami, K. et al. Activated protein C prevents LPS-induced pulmonary vascular injury by inhibiting cytokine production. Am. J. Physiol. 272, L197–L202 (1997).

    CAS  PubMed  Google Scholar 

  94. Grinnell, B. W., Hermann, R. B. & Yan, S. B. Human protein C inhibits selectin-mediated cell adhesion: role of unique fucosylated oligosaccharide. Glycobiology 4, 221–225 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Dhainaut, J. F., Yan, S. B. & Claessens, Y. E. Protein C/activated protein C pathway: overview of clinical trial results in severe sepsis. Crit. Care Med. 32, S194–S201 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Fourrier, F. et al. Septic shock, multiple organ failure, and disseminated intravascular coagulation. Compared patterns of antithrombin III, protein C, and protein S deficiencies. Chest 101, 816–823 (1992).

    Article  CAS  PubMed  Google Scholar 

  97. Mesters, R. M. et al. Prognostic value of protein C concentrations in neutropenic patients at high risk of severe septic complications. Crit. Care Med. 28, 2209–2216 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Yan, S. B. & Dhainaut, J. F. Activated protein C versus protein C in severe sepsis. Crit. Care Med. 29, S69–S74 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Iba, T. et al. Association between the severity of sepsis and the changes in hemostatic molecular markers and vascular endothelial damage markers. Shock 23, 25–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Taylor, F. B., Jr. et al. Protein C prevents the coagulopathic and lethal effects of Escherichia coli infusion in the baboon. J. Clin. Invest. 79, 918–925 (1987). The published animal study that served as the basis for the activated protein C human clinical trial.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Murakami, K. et al. Activated protein C attenuates endotoxin-induced pulmonary vascular injury by inhibiting activated leukocytes in rats. Blood 87, 642–647 (1996).

    CAS  PubMed  Google Scholar 

  102. Coalson, J. J. et al. A pathologic study of Escherichia coli shock in the baboon and the response to adrenocorticosteroid treatment. Surg. Gynecol. Obstet. 147, 726–736 (1978).

    CAS  PubMed  Google Scholar 

  103. Hinshaw, L. B. et al. Survival of primates in lethal septic shock following delayed treatment with steroid. Circ. Shock 8, 291–300 (1981).

    CAS  PubMed  Google Scholar 

  104. Levi, M. et al. Aggravation of endotoxin-induced disseminated intravascular coagulation and cytokine activation in heterozygous protein-C-deficient mice. Blood 101, 4823–4827 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Ganopolsky, J. G. & Castellino, F. J. A protein C deficiency exacerbates inflammatory and hypotensive responses in mice during polymicrobial sepsis in a cecal ligation and puncture model. Am. J. Pathol. 165, 1433–1446 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Laterre, P. F. et al. Hospital mortality and resource use in subgroups of the Recombinant Human Activated Protein C Worldwide Evaluation in Severe Sepsis (PROWESS) trial. Crit. Care Med. 32, 2207–2218 (2004).

    Article  PubMed  Google Scholar 

  107. Ward, P. A. et al. Anti-complement strategies in experimental sepsis. Scand. J. Infect. Dis. 35, 601–603 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a National Institutes of Health grant to J.A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon A. Buras.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

C-reactive protein

HMGB1

ICAM1

IL1

IL6

IL10

MIF

MyD88

TLR2

TLR4

TLR 9

FURTHER INFORMATION

Surviving Sepsis

Society of Critical Care Medicine:

Glossary

TOLL-LIKE RECEPTORS (TLR)

A class of cell surface proteins that recognize components of pathogenic organisms and regulate early activation of the immuno-inflammatory response.

MIDLINE LAPAROTOMY

Surgical opening of the abdominal cavity in the midline.

LD100

The lethal dose of a substance (for example, a toxin or infective agent) that causes 100% mortality in the study animals at a given time.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buras, J., Holzmann, B. & Sitkovsky, M. Animal Models of sepsis: setting the stage. Nat Rev Drug Discov 4, 854–865 (2005). https://doi.org/10.1038/nrd1854

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1854

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing