Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Beyond intestinal soap—bile acids in metabolic control

Key Points

  • Bile acids are amphipathic steroids derived from cholesterol that serve important physiological functions such as bile formation and intestinal fat absorption that are dependent on their detergent nature

  • The discovery of farnesoid X receptor (FXR) and G-protein coupled bile acid receptor 1 (TGR5) as bile acid receptors that regulate glucose, lipid and energy metabolism has highlighted bile acids as key players in metabolic control

  • Modulators of bile acid receptors have been developed as potential treatments for cholestatic liver diseases and metabolic diseases; organ-specific and/or gene-cluster-selective modulators are expected in the near future

  • Type 2 diabetes mellitus (T2DM) is accompanied by a shift in primary bile acid synthesis towards cholic acid and a corresponding increase in the secondary bile acid deoxycholic acid

  • Beneficial effects of bile acid sequestrants on glucose metabolism in patients with T2DM could reflect changed compartmentalization of the bile acid pool that modifies intestinal bile acid signalling

Abstract

Over the past decade, it has become apparent that bile acids are involved in a host of activities beyond their classic functions in bile formation and fat absorption. The identification of the farnesoid X receptor (FXR) as a nuclear receptor directly activated by bile acids and the discovery that bile acids are also ligands for the membrane-bound, G-protein coupled bile acid receptor 1 (also known as TGR5) have opened new avenues of research. Both FXR and TGR5 regulate various elements of glucose, lipid and energy metabolism. Consequently, a picture has emerged of bile acids acting as modulators of (postprandial) metabolism. Therefore, strategies that interfere with either bile acid metabolism or signalling cascades mediated by bile acids may represent novel therapeutic approaches for metabolic diseases. Synthetic modulators of FXR have been designed and tested, primarily in animal models. Furthermore, the use of bile acid sequestrants to reduce plasma cholesterol levels has unexpected benefits. For example, treatment of patients with type 2 diabetes mellitus (T2DM) with sequestrants causes substantial reductions in plasma levels of glucose and HbA1c. This Review aims to provide an overview of the molecular mechanisms by which bile acids modulate glucose and energy metabolism, particularly focusing on the glucose-lowering actions of bile acid sequestrants in insulin resistant states and T2DM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of primary and secondary bile acid species.
Figure 2: Schematic overview of bile acid signalling within the enterohepatic circulation.
Figure 3: The effects of T2DM and sequestration on bile acid kinetics.

Similar content being viewed by others

References

  1. Hofmann, A. F. The enterohepatic circulation of bile acids in mammals: form and functions. Front. Biosci. 14, 2584–2598 (2009).

    Article  CAS  Google Scholar 

  2. Stellaard, F., Sackmann, M., Sauerbruch, T. & Paumgartner, G. Simultaneous determination of cholic acid and chenodeoxycholic acid pool sizes and fractional turnover rates in human serum using 13C-labeled bile acids. J. Lipid Res. 25, 1313–1319 (1984).

    CAS  PubMed  Google Scholar 

  3. Meier, P. J. & Stieger, B. Bile salt transporters. Annu. Rev. Physiol. 64, 635–661 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Trauner, M., Wagner, M., Fickert, P. & Zollner, G. Molecular regulation of hepatobiliary transport systems: clinical implications for understanding and treating cholestasis. J. Clin. Gastroenterol. 39, S111–S124 (2005).

    Article  PubMed  Google Scholar 

  5. Lefebvre, P., Cariou, B., Lien, F., Kuipers, F. & Staels, B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89, 147–191 (2009).

    Article  PubMed  CAS  Google Scholar 

  6. Brufau, G., Groen, A. K. & Kuipers, F. Reverse cholesterol transport revisited: contribution of biliary versus intestinal cholesterol excretion. Arterioscler. Thromb. Vasc. Biol. 31, 1726–1733 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Oude Elferink, R. P., Frijters, C. M., Paulusma, C. & Groen, A. K. Regulation of canalicular transport activities. J. Hepatol. 24 (Suppl. 1), 94–99 (1996).

    CAS  PubMed  Google Scholar 

  8. Verkade, H. J., Vonk, R. J. & Kuipers, F. New insights into the mechanism of bile acid-induced biliary lipid secretion. Hepatology 21, 1174–1189 (1995).

    CAS  PubMed  Google Scholar 

  9. Parks, D. J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365–1368 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, H., Chen, J., Hollister, K., Sowers, L. C. & Forman, B. M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Halilbasic, E., Claudel, T. & Trauner, M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J. Hepatol. 58, 155–168 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sommer, F. & Backhed, F. The gut microbiota—masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    Article  PubMed  CAS  Google Scholar 

  14. Backhed, F. Host responses to the human microbiome. Nutr. Rev. 70 (Suppl. 1), S14–S17 (2012).

    Article  PubMed  Google Scholar 

  15. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article  PubMed  CAS  Google Scholar 

  16. Swann, J. R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4523–4530 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-β-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013).

    Article  PubMed  CAS  Google Scholar 

  18. Li, F. et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat. Commun. 4, 2384 (2013).

    Article  PubMed  CAS  Google Scholar 

  19. Hofmann, A. F. & Eckmann, L. How bile acids confer gut mucosal protection against bacteria. Proc. Natl Acad. Sci. USA 103, 4333–4334 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Staels, B. & Kuipers, F. Bile acid sequestrants and the treatment of type 2 diabetes mellitus. Drugs 67, 1383–1392 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Kir, S., Kliewer, S. A. & Mangelsdorf, D. J. Roles of FGF19 in liver metabolism. Cold Spring Harb. Symp. Quant. Biol. 76, 139–144 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Potthoff, M. J. et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab. 13, 729–738 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kir, S. et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331, 1621–1624 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Potthoff, M. J. et al. FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl Acad. Sci. USA 106, 10853–10858 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. de Aguiar Vallim, T. Q., Tarling, E. J. & Edwards, P. A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 17, 657–669 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Pols, T. W., Noriega, L. G., Nomura, M., Auwerx, J. & Schoonjans, K. The bile acid membrane receptor TGR5: a valuable metabolic target. Dig. Dis. 29, 37–44 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Keely, S. J. Missing link identified: GpBAR1 is a neuronal bile acid receptor. Neurogastroenterol. Motil. 22, 711–717 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Keitel, V. & Haussinger, D. Perspective: TGR5 (Gpbar-1) in liver physiology and disease. Clin. Res. Hepatol. Gastroenterol. 36, 412–419 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Makishima, M. et al. Vitamin D receptor as an intestinal bile acid sensor. Science 296, 1313–1316 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Germain, P., Staels, B., Dacquet, C., Spedding, M. & Laudet, V. Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58, 685–704 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. Kemper, J. K. Regulation of FXR transcriptional activity in health and disease: Emerging roles of FXR cofactors and post-translational modifications. Biochim. Biophys. Acta 1812, 842–850 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Fiorucci, S., Mencarelli, A., Distrutti, E., Palladino, G. & Cipriani, S. Targetting farnesoid-X-receptor: from medicinal chemistry to disease treatment. Curr. Med. Chem. 17, 139–159 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Y. & Edwards, P. A. FXR signaling in metabolic disease. FEBS Lett. 582, 10–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Thomas, A. M. et al. Hepatocyte nuclear factor 4 α and farnesoid X receptor co-regulates gene transcription in mouse livers on a genome-wide scale. Pharm. Res. 30, 2188–2198 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lee, J. et al. Genomic analysis of hepatic farnesoid X receptor binding sites reveals altered binding in obesity and direct gene repression by farnesoid X receptor in mice. Hepatology 56, 108–117 (2012).

    Article  PubMed  CAS  Google Scholar 

  39. Zhang, Y., Hagedorn, C. H. & Wang, L. Role of nuclear receptor SHP in metabolism and cancer. Biochim. Biophys. Acta 1812, 893–908 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Y., Kast-Woelbern, H. R. & Edwards, P. A. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J. Biol. Chem. 278, 104–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Huber, R. M. et al. Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene 290, 35–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Cariou, B. et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J. Biol. Chem. 281, 11039–11049 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Schote, A. B., Turner, J. D., Schiltz, J. & Muller, C. P. Nuclear receptors in human immune cells: expression and correlations. Mol. Immunol. 44, 1436–1445 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Rizzo, G. et al. The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo. Mol. Pharmacol. 70, 1164–1173 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. He, F. et al. Downregulation of endothelin-1 by farnesoid X receptor in vascular endothelial cells. Circ. Res. 98, 192–199 (2006).

    Article  PubMed  CAS  Google Scholar 

  46. Nishimura, M., Naito, S. & Yokoi, T. Tissue-specific mRNA expression profiles of human nuclear receptor subfamilies. Drug Metab. Pharmacokinet. 19, 135–149 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Bishop-Bailey, D., Walsh, D. T. & Warner, T. D. Expression and activation of the farnesoid X receptor in the vasculature. Proc. Natl Acad. Sci. USA 101, 3668–3673 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Abdelkarim, M. et al. The farnesoid X receptor regulates adipocyte differentiation and function by promoting peroxisome proliferator-activated receptor-gamma and interfering with the Wnt/β-catenin pathways. J. Biol. Chem. 285, 36759–36767 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Prawitt, J. et al. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60, 1861–1871 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhang, Y. et al. Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice. Mol. Endocrinol. 26, 272–280 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Prawitt, J., Caron, S. & Staels, B. Bile acid metabolism and the pathogenesis of type 2 diabetes. Curr. Diab Rep. 11, 160–166 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bjursell, M. et al. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH. PLoS ONE 8, e64721 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J. & Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 7, 678–693 (2008).

    Article  PubMed  CAS  Google Scholar 

  54. Haeusler, R. A., Pratt-Hyatt, M., Welch, C. L., Klaassen, C. D. & Accili, D. Impaired generation of 12-hydroxylated bile acids links hepatic insulin signaling with dyslipidemia. Cell Metab. 15, 65–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Hu, X., Bonde, Y., Eggertsen, G. & Rudling, M. Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism. J. Intern. Med. 275, 27–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Bisschop, P. H. et al. Low-fat, high-carbohydrate and high-fat, low-carbohydrate diets decrease primary bile acid synthesis in humans. Am. J. Clin. Nutr. 79, 570–576 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Jonkers, I. J. et al. Fish oil increases bile acid synthesis in male patients with hypertriglyceridemia. J. Nutr. 136, 987–991 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Duran-Sandoval, D. et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes 53, 890–898 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Gineste, R. et al. Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity. Mol. Endocrinol. 22, 2433–2447 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Berrabah, W. et al. The glucose sensing O-GlcNacylation pathway regulates the nuclear bile acid receptor FXR. Hepatology (2013).

  61. Kemper, J. K. et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 10, 392–404 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Inagaki, T. et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2, 217–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Schmidt, D. R. et al. Regulation of bile acid synthesis by fat-soluble vitamins A and D. J. Biol. Chem. 285, 14486–14494 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Vergnes, L., Lee, J. M., Chin, R. G., Auwerx, J. & Reue, K. Diet1 functions in the FGF15/19 enterohepatic signaling axis to modulate bile acid and lipid levels. Cell Metab. 17, 916–928 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kurosu, H. et al. Tissue-specific expression of β-Klotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem. 282, 26687–26695 (2007).

    Article  PubMed  CAS  Google Scholar 

  66. Boulias, K. et al. Regulation of hepatic metabolic pathways by the orphan nuclear receptor SHP. EMBO J. 24, 2624–2633 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Lundasen, T., Galman, C., Angelin, B. & Rudling, M. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J. Intern. Med. 260, 530–536 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Jones, S. A. Physiology of FGF15/19. Adv. Exp. Med. Biol. 728, 171–182 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Cicione, C., Degirolamo, C. & Moschetta, A. Emerging role of fibroblast growth factors 15/19 and 21 as metabolic integrators in the liver. Hepatology 56, 2404–2411 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Angelin, B., Larsson, T. E. & Rudling, M. Circulating fibroblast growth factors as metabolic regulators—a critical appraisal. Cell. Metab. 16, 693–705 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Dong, X. et al. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J. Clin. Invest. 116, 101–114 (2006).

    Article  PubMed  CAS  Google Scholar 

  72. Fang, Q. et al. Serum fibroblast growth factor 19 levels are decreased in Chinese subjects with impaired fasting glucose and inversely associated with fasting plasma glucose levels. Diabetes Care 36, 2810–2814 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Barutcuoglu, B. et al. Fibroblast growth factor-19 levels in type 2 diabetic patients with metabolic syndrome. Ann. Clin. Lab. Sci. 41, 390–396 (2011).

    CAS  PubMed  Google Scholar 

  74. Keitel, V., Ullmer, C. & Haussinger, D. The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes. Biol. Chem. 391, 785–789 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Pellicciari, R. et al. Discovery of 6α-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J. Med. Chem. 52, 7958–7961 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Watanabe, M. et al. Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J. Biol. Chem. 286, 26913–26920 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Watanabe, M. et al. Bile acid binding resin improves metabolic control through the induction of energy expenditure. PLoS ONE 7, e38286 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Maruyama, T. et al. Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. J. Endocrinol. 191, 197–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Sato, H. et al. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem. Biophys. Res. Commun. 362, 793–798 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Svensson, P. A. et al. The TGR5 gene is expressed in human subcutaneous adipose tissue and is associated with obesity, weight loss and resting metabolic rate. Biochem. Biophys. Res. Commun. 433, 563–566 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Patti, M. E. et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring) 17, 1671–1677 (2009).

    Article  CAS  Google Scholar 

  83. Kohli, R. et al. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J. Clin. Endocrinol. Metab. 98, E708–E712 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Steinert, R. E. et al. Bile acids and gut peptide secretion after bariatric surgery: a 1-year prospective randomized pilot trial. Obesity (Silver Spring) 21, E660–E668 (2013).

    Article  CAS  Google Scholar 

  85. Brufau, G. et al. Plasma bile acids are not associated with energy metabolism in humans. Nutr. Metab. (Lond.) 7, 73 (2010).

    Article  CAS  Google Scholar 

  86. Ockenga, J. et al. Plasma bile acids are associated with energy expenditure and thyroid function in humans. J. Clin. Endocrinol. Metab. 97, 535–542 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Jansen, P. L. et al. Alterations of hormonally active fibroblast growth factors after Roux-en-Y gastric bypass surgery. Dig. Dis. 29, 48–51 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Gerhard, G. S. et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care 36, 1859–1864 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Pournaras, D. J. et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology 153, 3613–3619 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Potthoff, M. J., Kliewer, S. A. & Mangelsdorf, D. J. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 26, 312–324 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Morton, G. J. et al. FGF19 action in the brain induces insulin-independent glucose lowering. J. Clin. Invest. 123, 4799–4808 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Holst, J. J. & McGill, M. A. Potential new approaches to modifying intestinal GLP-1 secretion in patients with type 2 diabetes mellitus: focus on bile acid sequestrants. Clin. Drug Investig. 32, 1–14 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Holst, J. J. Enteroendocrine secretion of gut hormones in diabetes, obesity and after bariatric surgery. Curr. Opin. Pharmacol. 13, 983–988 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Shah, M. et al. Contribution of endogenous glucagon-like peptide-1 to glucose metabolism after Roux-en-Y gastric bypass. Diabetes 63, 483–493 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Claudel, T., Sturm, E., Kuipers, F. & Staels, B. The farnesoid X receptor: a novel drug target? Expert Opin. Investig. Drugs 13, 1135–1148 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Fiorucci, S., Mencarelli, A., Distrutti, E. & Zampella, A. Farnesoid X receptor: from medicinal chemistry to clinical applications. Future Med. Chem. 4, 877–891 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Porez, G., Prawitt, J., Gross, B. & Staels, B. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J. Lipid Res. 53, 1723–1737 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Schaap, F. G., Trauner, M. & Jansen, P. L. Bile acid receptors as targets for drug development. Nat. Rev. Gastroenterol. Hepatol. 11, 55–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Halilbasic, E., Baghdasaryan, A. & Trauner, M. Nuclear receptors as drug targets in cholestatic liver diseases. Clin. Liver Dis. 17, 161–189 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Trauner, M. et al. Targeting nuclear bile acid receptors for liver disease. Dig. Dis. 29, 98–102 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Chiang, J. Y. Bile acid metabolism and signaling. Compr. Physiol. 3, 1191–1212 (2013).

    PubMed  PubMed Central  Google Scholar 

  102. Li, T. & Chiang, J. Y. Nuclear receptors in bile acid metabolism. Drug Metab. Rev. 45, 145–155 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Mudaliar, S. et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 145, 574–82. e1 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Reasner, C. A. Reducing cardiovascular complications of type 2 diabetes by targeting multiple risk factors. J. Cardiovasc. Pharmacol. 52, 136–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Robinson, J. G., Wang, S., Smith, B. J. & Jacobson, T. A. Meta-analysis of the relationship between non-high-density lipoprotein cholesterol reduction and coronary heart disease risk. J. Am. Coll. Cardiol. 53, 316–322 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Garg, A. & Grundy, S. M. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial. Ann. Intern. Med. 121, 416–422 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Bays, H. E., Goldberg, R. B., Truitt, K. E. & Jones, M. R. Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: glucose and lipid effects. Arch. Intern. Med. 168, 1975–1983 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Fonseca, V. A., Rosenstock, J., Wang, A. C., Truitt, K. E. & Jones, M. R. Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care 31, 1479–1484 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Goldberg, R. B., Fonseca, V. A., Truitt, K. E. & Jones, M. R. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch. Intern. Med. 168, 1531–1540 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Rosenstock, J. et al. Initial combination therapy with metformin and colesevelam for achievement of glycemic and lipid goals in early type 2 diabetes. Endocr. Pract. 16, 629–640 (2010).

    Article  PubMed  Google Scholar 

  111. Schwartz, S. L. et al. The effect of colesevelam hydrochloride on insulin sensitivity and secretion in patients with type 2 diabetes: a pilot study. Metab. Syndr. Relat. Disord. 8, 179–188 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Rosenson, R. S., Abby, S. L. & Jones, M. R. Colesevelam HCl effects on atherogenic lipoprotein subclasses in subjects with type 2 diabetes. Atherosclerosis 204, 342–344 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Zieve, F. J., Kalin, M. F., Schwartz, S. L., Jones, M. R. & Bailey, W. L. Results of the glucose-lowering effect of WelChol study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin. Ther. 29, 74–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Ooi, C. P. & Loke, S. C. Colesevelam for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, Issue 12. Art. No.: CD009361 http://dx.doi.org/10.1002/14651858.CD009361.pub2.

  115. Brufau, G. et al. Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology 52, 1455–1464 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Suhre, K. et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS ONE 5, e13953 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Bennion, L. J. & Grundy, S. M. Effects of diabetes mellitus on cholesterol metabolism in man. N. Engl. J. Med. 296, 1365–1371 (1977).

    Article  CAS  PubMed  Google Scholar 

  118. de Leon, M. P., Ferenderes, R. & Carulli, N. Bile lipid composition and bile acid pool size in diabetes. Am. J. Dig. Dis. 23, 710–716 (1978).

    Article  CAS  PubMed  Google Scholar 

  119. Abrams, J. J., Ginsberg, H. & Grundy, S. M. Metabolism of cholesterol and plasma triglycerides in nonketotic diabetes mellitus. Diabetes 31, 903–910 (1982).

    Article  CAS  PubMed  Google Scholar 

  120. Haber, G. B. & Heaton, K. W. Lipid composition of bile in diabetics and obesity-matched controls. Gut 20, 518–522 (1979).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Andersen, E., Karlaganis, G. & Sjovall, J. Altered bile acid profiles in duodenal bile and urine in diabetic subjects. Eur. J. Clin. Invest. 18, 166–172 (1988).

    Article  CAS  PubMed  Google Scholar 

  122. Beysen, C. et al. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study. Diabetologia 55, 432–442 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Shang, Q., Saumoy, M., Holst, J. J., Salen, G. & Xu, G. Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G419–G424 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Smushkin, G. et al. The effect of a bile acid sequestrant on glucose metabolism in subjects with type 2 diabetes. Diabetes 62, 1094–1101 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Herrema, H. et al. Bile salt sequestration induces hepatic de novo lipogenesis through farnesoid X receptor- and liver X receptor α-controlled metabolic pathways in mice. Hepatology 51, 806–816 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Meissner, M. et al. Bile acid sequestration reduces plasma glucose levels in db/db mice by increasing its metabolic clearance rate. PLoS ONE 6, e24564 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Hofmann, A. F. Bile acid sequestrants improve glycemic control in type 2 diabetes: a proposed mechanism implicating glucagon-like peptide 1 release. Hepatology 53, 1784 (2011).

    Article  PubMed  Google Scholar 

  128. Potthoff, M. J. et al. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G371–G380 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Wu, T. et al. Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes Obes. Metab. 15, 474–477 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Lundasen, T. et al. Inhibition of intestinal bile acid transporter Slc10a2 improves triglyceride metabolism and normalizes elevated plasma glucose levels in mice. PLoS ONE 7, e37787 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Kharitonenkov, A. et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115, 1627–1635 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Coskun, T. et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149, 6018–6027 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Xu, J. et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58, 250–259 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Brestoff, J. R. & Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14, 676–684 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Papacleovoulou, G. et al. Maternal cholestasis during pregnancy programs metabolic disease in offspring. J. Clin. Invest. 123, 3172–3181 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Bochkis, I. M., Shin, S. & Kaestner, K. H. Bile acid-induced inflammatory signaling in mice lacking Foxa2 in the liver leads to activation of mTOR and age-onset obesity. Mol. Metab. 2, 447–456 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Russell, D. W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Russell, D. W. Fifty years of advances in bile acid synthesis and metabolism. J. Lipid Res. 50 (Suppl.), S120–S125 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.K. researched the data for the article, provided substantial contribution to discussions of the content, contributed equally to writing the article and reviewed and/or edited the manuscript before submission. V.W.B. researched the data for the article and reviewed and/or edited the manuscript before submission. A.K.G. provided substantial contribution to discussions of the content, contributed equally to writing the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Folkert Kuipers.

Ethics declarations

Competing interests

F.K. declares that part of the original research referred to in this article was supported by TiPharma (T1-106) and that he received an unrestricted research grant from Daiichi Sankyo to evaluate the effects of colesevelam on bile acid metabolism in humans and animals. V.W.B. and A.K.G. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuipers, F., Bloks, V. & Groen, A. Beyond intestinal soap—bile acids in metabolic control. Nat Rev Endocrinol 10, 488–498 (2014). https://doi.org/10.1038/nrendo.2014.60

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.60

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research