Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Islet α cells and glucagon—critical regulators of energy homeostasis

Key Points

  • Perturbation of normal homeostatic control of proglucagon processing can occur, which gives rise to production of glucagon-like peptide 1 in the inflamed or injured pancreas

  • The plasticity and interconversion of α cells and β cells provides opportunities for cell replacement and differentiation strategies for the treatment of diabetes mellitus

  • The central role of glucagon in maintenance of euglycaemia underscores the rationale for clinical strategies for simultaneous glucagon and insulin administration for therapy of type 1 diabetes mellitus (T1DM)

  • Glucagon agonists reduce food intake and increase energy expenditure, which highlights pathways that could be targeted in the treatment of obesity

  • Dysregulated glucagon secretion and increased hepatic glucose production in patients with T1DM or type 2 diabetes mellitus forms the basis of attempts to reduce glucagon action to treat these individuals

  • Mechanism-based adverse events, such as cardiovascular effects, are mediated by glucagon receptor signalling and should be considered when developing therapeutic strategies directed at enhancing or attenuating glucagon action

Abstract

Glucagon is secreted from islet α cells and controls blood levels of glucose in the fasting state. Impaired glucagon secretion predisposes some patients with type 1 diabetes mellitus (T1DM) to hypoglycaemia; whereas hyperglycaemia in patients with T1DM or type 2 diabetes mellitus (T2DM) is often associated with hyperglucagonaemia. Hence, therapeutic strategies to safely achieve euglycaemia in patients with diabetes mellitus now encompass bihormonal approaches to simultaneously deliver insulin and glucagon (in patients with T1DM) or reduce excess glucagon action (in patients with T1DM or T2DM). Glucagon also reduces food intake and increases energy expenditure through central and peripheral mechanisms, which suggests that activation of signalling through the glucagon receptor might be useful for controlling body weight. Here, we review new data that is relevant to understanding α-cell biology and glucagon action in the brain, liver, adipose tissue and heart, with attention to normal physiology, as well as conditions associated with dysregulated glucagon action. The feasibility and safety of current and emerging glucagon-based therapies that encompass both gain-of-function and loss-of-function approaches for the treatment of T1DM, T2DM and obesity is discussed in addition to developments, challenges and critical gaps in our knowledge that require additional investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proglucagon-derived peptides liberated in the pancreas and gastrointestinal tract.
Figure 2: Physiological actions of glucagon.

Similar content being viewed by others

References

  1. Cryer, P. E. Glycemic goals in diabetes: trade-off between glycemic control and iatrogenic hypoglycemia. Diabetes 63, 2188–2195 (2014).

    Article  PubMed  Google Scholar 

  2. Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Pincus, I. J. & Rutman, J. Z. Glucagon, the hyperglycemic agent in pancreatic extracts; a possible factor in certain types of diabetes. Arch. Intern. Med. 92, 666–677 (1953).

    Article  CAS  Google Scholar 

  4. Unger, R. H. & Cherrington, A. D. Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J. Clin. Invest. 122, 4–12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cryer, P. E., Davis, S. N. & Shamoon, H. Hypoglycemia in diabetes. Diabetes Care 26, 1902–1912 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Cryer, P. E. Mechanisms of hypoglycemia-associated autonomic failure in diabetes. N. Engl. J. Med. 369, 362–372 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Gromada, J., Franklin, I. & Wollheim, C. B. α-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr. Rev. 28, 84–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Campbell, J. E. & Drucker, D. J. Pharmacology physiology and mechanisms of incretin hormone action. Cell Metab. 17, 819–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Yue, J. T. et al. Amelioration of hypoglycemia via somatostatin receptor type 2 antagonism in recurrently hypoglycemic diabetic rats. Diabetes 62, 2215–2222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Q. et al. Role of KATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes. Cell Metab. 18, 871–882 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lamy, C. M. et al. Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Cell Metab. 19, 527–538 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Plamboeck, A. et al. The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1117–G1127 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Wewer Albrechtsen, N. J. et al. Hyperglucagonaemia analysed by glucagon sandwich ELISA: nonspecific interference or truly elevated levels? Diabetologia 57, 1919–1926 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Molina, J. et al. Control of insulin secretion by cholinergic signaling in the human pancreatic islet. Diabetes 63, 2714–2726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodriguez-Diaz, R. et al. α cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat. Med. 17, 888–892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Unger, R. H. Glucagon physiology and pathophysiology. N. Engl. J. Med. 285, 443–449 (1971).

    Article  CAS  PubMed  Google Scholar 

  17. Gutniak, M., Grill, V. & Efendic, S. Effect of composition of mixed meals—low- versus high-carbohydrate content—on insulin, glucagon, and somatostatin release in healthy humans and in patients with NIDDM. Diabetes Care 9, 244–249 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Le Marchand, S. J. & Piston, D. W. Glucose suppression of glucagon secretion: metabolic and calcium responses from α-cells in intact mouse pancreatic islets. J. Biol. Chem. 285, 14389–14398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bak, M. J. et al. Specificity and sensitivity of commercially available assays for glucagon and oxyntomodulin measurement in humans. Eur. J. Endocrinol. 170, 529–538 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Shah, P. et al. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 85, 4053–4059 (2000).

    CAS  PubMed  Google Scholar 

  21. Kramer, C. K., Borgono, C. A., Van Nostrand, P., Retnakaran, R. & Zinman, B. Glucagon response to oral glucose challenge in type 1 diabetes: lack of impact of euglycemia. Diabetes Care 37, 1076–1082 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Chia, C. W. et al. Exogenous glucose-dependent insulinotropic polypeptide worsens post prandial hyperglycemia in type 2 diabetes. Diabetes 58, 1342–1349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Christensen, M. B., Calanna, S., Holst, J. J., Vilsboll, T. & Knop, F. K. Glucose-dependent insulinotropic polypeptide: blood glucose stabilizing effects in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 99, E418–E426 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Fujita, Y. et al. Glucose-dependent insulinotropic polypeptide is expressed in pancreatic islet α-cells and promotes insulin secretion. Gastroenterology 138, 1966–1975 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Bramswig, N. C. et al. Epigenomic plasticity enables human pancreatic α- to β cell reprogramming. J. Clin. Invest. 123, 1275–1284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nie, Y. et al. Regulation of pancreatic PC1 and PC2 associated with increased glucagon-like peptide 1 in diabetic rats. J. Clin. Invest. 105, 955–965 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marchetti, P. et al. A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia 55, 3262–3272 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Ellingsgaard, H. et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and α cells. Nat. Med. 17, 1481–1489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nauck, M. A., Vardarli, I., Deacon, C. F., Holst, J. J. & Meier, J. J. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia 54, 10–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Faerch, K. et al. Glucagon-like peptide-1 (GLP-1) response to oral glucose is reduced in pre-diabetes, screen-detected tpe 2 diabetes and obesity, and influenced by sex: The ADDITION-PRO Study. Diabetes http://dx.doi.org/10.2337/db14-1751.

  31. Collombat, P. et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cells. Cell 138, 449–462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G. & Gruss, P. The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas. Nature 386, 399–402 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464, 1149–1154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thorel, F. et al. Normal glucagon signaling and β-cell function after near-total α-cell ablation in adult mice. Diabetes 60, 2872–2882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brereton, M. F. et al. Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nat. Commun. 5, 4639 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Ferrannini, E. et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest. 124, 499–508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Merovci, A. et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J. Clin. Invest. 124, 509–514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bonner, C. et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic α cells triggers glucagon secretion. Nat. Med. http://dx.doi.org/10.1038/10.1038/nm.3828 (2015).

  39. Jorgensen, N. B. et al. Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with type 2 diabetes and normal glucose tolerance. Am. J. Physiol. Endocrinol. Metab. 303, E122–E131 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Meier, J. J. et al. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology 130, 44–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Bahrami, J., Longuet, C., Baggio, L. L., Li, K. & Drucker, D. J. The glucagon-like peptide-2 receptor modulates islet adaptation to metabolic stress in the ob/ob mouse. Gastroenterology 139, 857–868 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Drucker, D. J. & Yusta, B. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu. Rev. Physiol. 76, 561–583 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Drucker, D. J. & Asa, S. Glucagon gene expression in vertebrate brain. J. Biol. Chem. 263, 13475–13478 (1988).

    CAS  PubMed  Google Scholar 

  44. Campos, R. V., Lee, Y. C. & Drucker, D. J. Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology 134, 2156–2164 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Jin, S.-L. C. et al. Distribution of glucagonlike peptide 1 (GLP-1), glucagon, and glicentin in the rat brain: an immunocytochemical study. J. Comp. Neurol. 271, 519–532 (1988).

    Article  CAS  PubMed  Google Scholar 

  46. Habegger, K. M. et al. The metabolic actions of glucagon revisited. Nat. Rev. Endocrinol. 6, 689–697 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tschop, M. H. & DiMarchi, R. D. Outstanding Scientific Achievement Award Lecture 2011: defeating diabesity: the case for personalized combinatorial therapies. Diabetes 61, 1309–1314 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mighiu, P. I. et al. Hypothalamic glucagon signaling inhibits hepatic glucose production. Nat. Med. 19, 766–772 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Ali, S. & Drucker, D. J. Benefits and limitations of reducing glucagon action for the treatment of type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 296, E415–E421 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Tan, T. M. et al. Coadministration of glucagon-like peptide-1 during glucagon infusion in man results in increased energy expenditure and amelioration of hyperglycemia. Diabetes 62, 1131–1138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, Y., Wang, M. Y., Du, X. Q., Charron, M. J. & Unger, R. H. Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 60, 391–397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, Y. et al. Metabolic manifestations of insulin deficiency do not occur without glucagon action. Proc. Natl Acad. Sci. USA 109, 14972–14976 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gelling, R. W. et al. Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice. Proc. Natl Acad. Sci. USA 100, 1438–1443 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ali, S., Lamont, B. J., Charron, M. J. & Drucker, D. J. Dual elimination of the glucagon and GLP-1 receptors in mice reveals plasticity in the incretin axis. J. Clin. Invest. 121, 1917–1929 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Omar, B. A. et al. Fibroblast growth factor 21 (FGF21) and glucagon-like peptide 1 contribute to diabetes resistance in glucagon receptor-deficient mice. Diabetes 63, 101–110 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Dobbs, R. et al. Glucagon: role in the hyperglycemia of diabetes mellitus. Science 187, 544–547 (1975).

    Article  CAS  PubMed  Google Scholar 

  57. Gerich, J. E. et al. Prevention of human diabetic ketoacidosis by somatostatin. Evidence for an essential role of glucagon. N. Engl. J. Med. 292, 985–989 (1975).

    Article  CAS  PubMed  Google Scholar 

  58. Fujikawa, T., Chuang, J. C., Sakata, I., Ramadori, G. & Coppari, R. Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. Proc. Natl Acad. Sci. USA 107, 17391–17396 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Perry, R. J. et al. Leptin reverses diabetes by suppression of the hypothalamic–pituitary–adrenal axis. Nat. Med. 20, 759–763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nathan, D. M. et al. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 37, 9–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. El-Khatib, F. H., Russell, S. J., Nathan, D. M., Sutherlin, R. G. & Damiano, E. R. A bihormonal closed-loop artificial pancreas for type 1 diabetes. Sci. Transl. Med. 2, 27ra27 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Russell, S. J. et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N. Engl. J. Med. 371, 313–325 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jun, L. S. et al. Absence of glucagon and insulin action reveals a role for the glucagon-like peptide-1 receptor in endogenous glucose production. Diabetes 64, 819–827 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Gu, W. et al. Glucagon receptor antagonist-mediated improvements in glycemic control are dependent on functional pancreatic GLP-1 receptor. Am. J. Physiol. Endocrinol. Metab. 299, E624–E632 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Habegger, K. M. et al. Fibroblast growth factor 21 mediates specific glucagon actions. Diabetes 62, 1453–1463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, J. et al. Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR) knockout mice: implications on anti-glucagon therapies for diabetes. BMC Genomics 12, 281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van Dongen, M. G. et al. First proof of pharmacology in humans of a novel glucagon receptor antisense drug. J. Clin. Pharmacol. 55, 298–306 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, M. Y. et al. Glucagon receptor antibody completely suppresses type 1 diabetes phenotype without insulin by disrupting a novel diabetogenic pathway. Proc. Natl Acad. Sci. USA 112, 2503–2508 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sloop, K. W. et al. Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. J. Clin. Invest. 113, 1571–1581 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liang, Y. et al. Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes 53, 410–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Winzell, M. S. et al. Glucagon receptor antagonism improves islet function in mice with insulin resistance induced by a high-fat diet. Diabetologia 50, 1453–1462 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Chen, M. et al. Absence of the glucagon-like peptide-1 receptor does not affect the metabolic phenotype of mice with liver-specific Gsα deficiency. Endocrinology 152, 3343–3350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Longuet, C. et al. Liver-specific disruption of the murine glucagon receptor produces α-cell hyperplasia: evidence for a circulating α-cell growth factor. Diabetes 62, 1196–1205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sinclair, E. M. et al. Glucagon receptor signaling is essential for control of murine hepatocyte survival. Gastroenterology 135, 2096–2106 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Vuguin, P. M. et al. Ablation of the glucagon receptor gene increases fetal lethality and produces alterations in islet development and maturation. Endocrinology 147, 3995–4006 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Zhou, C., Dhall, D., Nissen, N. N., Chen, C. R. & Yu, R. A homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, α cell hyperplasia, and islet cell tumor. Pancreas 38, 941–946 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sipos, B. et al. Glucagon cell hyperplasia and neoplasia with and without glucagon receptor mutations. J. Clin. Endocrinol. Metab. http://dx.doi.org/10.1210/jc.2014-4405.

  78. Drucker, D. J. Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls. Diabetes 62, 3316–3323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Koehler, J. A. et al. Glucagon-like peptide-1 receptor agonists increase pancreatic mass by induction of protein synthesis. Diabetes 64, 1046–1056 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Koehler, J. A. et al. GLP-1R agonists promote normal and neoplastic intestinal growth through mechanisms requiring Fgf7. Cell Metab. 21, 379–391 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Xiao, C., Pavlic, M., Szeto, L., Patterson, B. W. & Lewis, G. F. Effects of acute hyperglucagonemia on hepatic and intestinal lipoprotein production and clearance in healthy humans. Diabetes 60, 383–90 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Longuet, C. et al. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab. 8, 359–371 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kawamori, D. et al. Insulin signaling in α cells modulates glucagon secretion in vivo. Cell Metab. 9, 350–361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Riddle, M. C. & Drucker, D. J. Emerging therapies mimicking the effects of amylin and glucagon-like peptide 1. Diabetes Care 29, 435–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Silvestre, R. A. et al. Selective amylin inhibition of the glucagon response to arginine is extrinsic to the pancreas. Am. J. Physiol. Endocrinol. Metab. 280, E443–E449 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Richards, P. et al. Identification and characterisation of glucagon-like peptide-1 receptor expressing cells using a new transgenic mouse model. Diabetes 63, 1224–1233 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Pyke, C. et al. GLP-1 receptor localization in monkey and human tissue: Novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155, 1280–1290 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Dupre, J., Behme, M. T. & McDonald, T. J. Exendin-4 normalized postcibal glycemic excursions in type 1 diabetes. J. Clin. Endocrinol. Metab. 89, 3469–3473 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Farngren, J., Persson, M., Schweizer, A., Foley, J. E. & Ahren, B. Vildagliptin reduces glucagon during hyperglycemia and sustains glucagon counterregulation during hypoglycemia in type 1 diabetes. J. Clin. Endocrinol. Metab. 97, 3799–3806 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Aulinger, B. A. et al. Defining the role of GLP-1 in the enteroinsulinar axis in type 2 diabetes using DPP-4 inhibition and GLP-1 receptor blockade. Diabetes 63, 1079–1092 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Cegla, J. et al. Coinfusion of low-dose GLP-1 and glucagon in man results in a reduction in food intake. Diabetes 63, 3711–3720 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Billington, C. J., Bartness, T. J., Briggs, J., Levine, A. S. & Morley, J. E. Glucagon stimulation of brown adipose tissue growth and thermogenesis. Am. J. Physiol. 252, R160–R165 (1987).

    CAS  PubMed  Google Scholar 

  93. Kinoshita, K. et al. Glucagon is essential for adaptive thermogenesis in brown adipose tissue. Endocrinology 155, 3484–3492 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Arafat, A. M. et al. Glucagon increases circulating fibroblast growth factor 21 independently of endogenous insulin levels: a novel mechanism of glucagon-stimulated lipolysis? Diabetologia 56, 588–597 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Finan, B. et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21, 27–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Pocai, A. Action and therapeutic potential of oxyntomodulin. Mol. Metab. 14, 241–251 (2013).

    Google Scholar 

  97. Day, J. W. et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Mukharji, A., Drucker, D. J., Charron, M. J. & Swoap, S. J. Oxyntomodulin increases intrinsic heart rate through the glucagon receptor. Physiol. Rep. 1, e00112 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ussher, J. R. & Drucker, D. J. Cardiovascular actions of incretin-based therapies. Circ. Res. 114, 1788–1803 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Ussher, J. R. et al. Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotection. Mol. Metab. 3, 507–517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ali, S. et al. Cardiomyocyte glucagon receptor signaling modulates outcomes in mice with experimental myocardial infarction. Mol. Metab. 4, 132–143 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lockie, S. H. et al. Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes 61, 2753–2762 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rezania, A. et al. Production of functional glucagon-secreting α-cells from human embryonic stem cells. Diabetes 60, 239–247 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  105. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  106. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  107. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  108. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  109. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  110. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.E.C. and D.J.D. researched data for the article, provided substantial contributions to discussions of the content, contributed equally to writing the article, and to reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Daniel J. Drucker.

Ethics declarations

Competing interests

D.J.D. has served as a consultant for companies developing incretin-based therapies for the treatment of diabetes mellitus, including Arisaph Pharmaceuticals, Intarcia Therapeutics, MedImmune, Merck Research Laboratories, Novo Nordisk, NPS Pharmaceuticals and Receptos. Neither D.J.D. nor his family members hold stock directly or indirectly in any of these companies. Preclinical studies in D.J.D.'s laboratory are supported, in part, by grants to Mount Sinai Hospital from Merck, Novo Nordisk and Sanofi. J.E.C. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, J., Drucker, D. Islet α cells and glucagon—critical regulators of energy homeostasis. Nat Rev Endocrinol 11, 329–338 (2015). https://doi.org/10.1038/nrendo.2015.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing