Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic syndrome: from epidemiology to systems biology

Key Points

  • Metabolic syndrome (MetSyn) is a group of metabolic conditions that occur together and promote the development of type 2 diabetes and cardiovascular disease. These include abdominal obesity, insulin resistance, low levels of high-density lipoprotein (HDL), elevated levels of triglycerides, elevated blood pressure, and a pro-inflammatory, pro-thrombotic milieu.

  • MetSyn traits are determined by the interaction of environmental factors, particularly excess calorific intake and a sedentary lifestyle, and genetic factors.

  • Genome-wide association studies have revealed a number of novel genes contributing to MetSyn traits. These include genes affecting obesity, lipoprotein levels, type 2 diabetes, and fasting glucose levels.

  • As yet, only a small fraction of the genetic component of MetSyn traits can be explained by known genes and loci. It is clear that the overall genetic architecture of MetSyn traits must be complex, involving hundreds of genes, with both common and rare variants.

  • Two somewhat unexplored areas that are important in MetSyn are sex differences and maternal nutrition.

  • Studies in rodent models have elucidated some fundamental mechanisms contributing to MetSyn and its relationship to diabetes and cardiovascular disease. These include abnormalities in fuel partitioning and mitochondrial function, inflammation related to obesity, and endoplasmic reticulum stress.

  • It seems unlikely that the complex molecular networks that underlie MetSyn can be fully addressed by traditional genetic and biochemical approaches. Recent studies suggest that systems-based approaches, that look beyond individual components, may be able to model gene–gene and gene–environment interactions in MetSyn.

  • One systems-based approach that is proving particularly useful is the integration of common DNA variation, global expression array analysis and clinical phenotypes. When applied to genetically randomized populations, it has the potential to model causal interactions as well as gene co-expression networks.

Abstract

Metabolic syndrome (MetSyn) is a group of metabolic conditions that occur together and promote the development of cardiovascular disease (CVD) and diabetes. Recent genome-wide association studies have identified several novel susceptibility genes for MetSyn traits, and studies in rodent models have provided important molecular insights. However, as yet, only a small fraction of the genetic component is known. Systems-based approaches that integrate genomic, molecular and physiological data are complementing traditional genetic and biochemical approaches to more fully address the complexity of MetSyn.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Approaches to identify gene variations that contribute to MetSyn.
Figure 2: Integration of DNA variation, gene expression and clinical phenotypes for analysis of complex traits.

Similar content being viewed by others

References

  1. Reaven, G. M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988). The first definition of MetSyn as an entity, defined by the clustering of abnormalities having insulin resistance as an underlying cause. Although the specific definition continues to evolve, the major insights presented here have remained important.

    Article  CAS  PubMed  Google Scholar 

  2. Eckel, R. H., Grundy, S. M. & Zimmet, P. Z. The metabolic syndrome. Lancet 365, 1415–1428 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. King, R. A., Rotter, J. I. & Motulsky, A. G. The Genetic Basis of Common Disease (Oxford University Press, New York, 2002).

    Google Scholar 

  5. Lazar, M. A. How obesity causes diabetes: not a tall tale. Science 307, 373–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Muoio, D. M. & Newgard, C. B. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nature Rev. Mol. Cell Biol. 9, 193–205 (2008).

    Article  CAS  Google Scholar 

  7. Van Gaal, L. F., Mertens, I. L. & De Block, C. E. Mechanisms linking obesity with cardiovascular disease. Nature 444, 875–880 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era — concepts and misconceptions. Nature Rev. Genet. 9, 255–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Doria, A., Patti, M. E. & Kahn, C. R. The emerging genetic architecture of type 2 diabetes. Cell. Metab. 8, 186–200 (2008). A review of our current understanding of factors contributing to monogenic and common forms of type 2 diabetes. The experimental approaches, the genes identified and implications for the development of diagnostics and therapeutics are discussed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kathiresan, S., Musunuru, K. & Orho-Melander, M. Defining the spectrum of alleles that contribute to blood lipid concentrations in humans. Curr. Opin. Lipidol. 19, 122–127 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Perry, J. R. & Frayling, T. M. New gene variants alter type 2 diabetes risk predominantly through reduced beta-cell function. Curr. Opin. Clin. Nutr. Metab. Care 11, 371–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Bouatia-Naji, N. et al. A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science 320, 1085–1088 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, W. M. et al. Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J. Clin. Invest. 118, 2620–2628 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007). A landmark GWA study that detected an association between a common variant in the FTO gene and type 2 diabetes, through effects on body mass index. Notably, the effects conferred by the susceptible allele are also apparent in children as well as in adults.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kathiresan, S. et al. A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study. BMC Med. Genet. 8 (Suppl 1), S17 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nature Genet. 40, 189–197 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Loos, R. J. et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nature Genet. 40, 768–75 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Orho-Melander, M. et al. A common missense variant in the glucokinase regulatory protein gene (GCKR) is associated with increased plasma triglyceride and c-reactive protein but lower fasting glucose concentrations. Diabetes 4 Aug 2008 (doi: 10.2337/db08-0516).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Samani, N. J. et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sandhu, M. S. et al. LDL-cholesterol concentrations: a genome-wide association study. Lancet 371, 483–491 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Scott, L. J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scuteri, A. et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3, e115 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature Genet. 40, 638–645 (2008). A large GWA study that identified three novel susceptibility genes for type 2 diabetes, and that confirmed others.

    Article  CAS  PubMed  Google Scholar 

  25. Do, R. et al. Genetic variants of FTO influence adiposity, insulin sensitivity, leptin levels, and resting metabolic rate in the Quebec Family Study. Diabetes 57, 1147–1150 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Freathy, R. M. et al. Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected given its effect on BMI. Diabetes 57, 1419–1426 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Fahmi, S., Yang, C., Esmail, S., Hobbs, H. H. & Cohen, J. C. Functional characterization of genetic variants in NPC1L1 supports the sequencing extremes strategy to identify complex trait genes. Hum. Mol. Genet. 17, 2101–2107 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frikke-Schmidt, R., Nordestgaard, B. G., Jensen, G. B. & Tybjaerg-Hansen, A. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J. Clin. Invest. 114, 1343–1353 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jakobsson, M. et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451, 998–1003 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Schadt, E. E. et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6, e107 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Speakman, J. R. A nonadaptive scenario explaining the genetic predisposition to obesity: the 'predation release' hypothesis. Cell. Metab. 6, 5–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Poirier, P. et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113, 898–918 (2006).

    Article  PubMed  Google Scholar 

  33. Bergman, R. N. et al. Why visceral fat is bad: mechanisms of the metabolic syndrome. Obesity (Silver Spring) 14 (Suppl 1), 16S–19S (2006).

    Article  CAS  Google Scholar 

  34. Wajchenberg, B. L., Giannella-Neto, D., da Silva, M. E. & Santos, R. F. Depot-specific hormonal characteristics of subcutaneous and visceral adipose tissue and their relation to the metabolic syndrome. Horm. Metab. Res. 34, 616–621 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Gesta, S., Tseng, Y. H. & Kahn, C. R. Developmental origin of fat: tracking obesity to its source. Cell 131, 242–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Gesta, S. et al. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc. Natl Acad. Sci. USA 103, 6676–6681 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hocking, S. L., Chisholm, D. J. & James, D. E. Studies of regional adipose transplantation reveal a unique and beneficial interaction between subcutaneous adipose tissue and the intra-abdominal compartment. Diabetologia 51, 900–902 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Tran, T. T., Yamamoto, Y., Gesta, S. & Kahn, C. R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell. Metab. 7, 410–420 (2008). Fat transplantation studies in the mouse demonstrating that the observed detrimental effects of visceral adipose tissue on metabolism are related to intrinsic differences in the activity of visceral compared with subcutaneous fat tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Agarwal, A. K. & Garg, A. Genetic disorders of adipose tissue development, differentiation, and death. Annu. Rev. Genomics Hum. Genet. 7, 175–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Krut, L. H. & Singer, R. Steatopygia: The fatty acid composition of subcutaneous adipose tissue in the Hottentot. Am. J. Phys. Anthropol. 21, 181–187 (1963).

    Article  CAS  PubMed  Google Scholar 

  41. Blouin, K., Boivin, A. & Tchernof, A. Androgens and body fat distribution. J. Steroid Biochem. Mol. Biol. 108, 272–280 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Garaulet, M. et al. Body fat distribution in pre- and post-menopausal women: metabolic and anthropometric variables. J. Nutr. Health Aging 6, 123–126 (2002).

    CAS  PubMed  Google Scholar 

  43. Wang, S. et al. Genetic and genomic analysis of a fat mass trait with complex inheritance reveals marked sex specificity. PLoS Genet. 2, e15 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gui, Y., Silha, J. V. & Murphy, L. J. Sexual dimorphism and regulation of resistin, adiponectin, and leptin expression in the mouse. Obes. Res. 12, 1481–1491 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Bukowski, R. et al. Human sexual size dimorphism in early pregnancy. Am. J. Epidemiol. 165, 1216–1218 (2007).

    Article  PubMed  Google Scholar 

  46. Arnold, A. P. & Burgoyne, P. S. Are XX and XY brain cells intrinsically different? Trends Endocrinol. Metab. 15, 6–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Barker, D. J. The developmental origins of well-being. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 359, 1359–1366 (2004).

    Article  CAS  Google Scholar 

  48. Gluckman, P. D. & Hanson, M. A. Living with the past: evolution, development, and patterns of disease. Science 305, 1733–1736 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Yura, S. et al. Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell. Metab. 1, 371–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Park, J. H., Stoffers, D. A., Nicholls, R. D. & Simmons, R. A. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J. Clin. Invest. 118, 2316–2324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Napoli, C. et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J. Clin. Invest. 100, 2680–2690 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Napoli, C. et al. Maternal hypercholesterolemia during pregnancy promotes early atherogenesis in LDL receptor-deficient mice and alters aortic gene expression determined by microarray. Circulation 105, 1360–1367 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Jirtle, R. L. & Skinner, M. K. Environmental epigenomics and disease susceptibility. Nature Rev. Genet. 8, 253–262 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Raychaudhuri, N., Raychaudhuri, S., Thamotharan, M. & Devaskar, S. U. Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J. Biol. Chem. 283, 13611–13626 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aitman, T. J. et al. Progress and prospects in rat genetics: a community view. Nature Genet. 40, 516–522 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Clee, S. M. & Attie, A. D. The genetic landscape of type 2 diabetes in mice. Endocr. Rev. 28, 48–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, M. Y. et al. Adipogenic capacity and the susceptibility to type 2 diabetes and metabolic syndrome. Proc. Natl Acad. Sci. USA 105, 6139–6144 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang, C. J. et al. Induction of endoplasmic reticulum stress-induced beta-cell apoptosis and accumulation of polyubiquitinated proteins by human islet amyloid polypeptide. Am. J. Physiol. Endocrinol. Metab. 293, E1656–E1662 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1, 785–789 (1963).

    Article  CAS  PubMed  Google Scholar 

  60. Magnan, C., Gilbert, M. & Kahn, B. B. Chronic free fatty acid infusion in rats results in insulin resistance but no alteration in insulin-responsive glucose transporter levels in skeletal muscle. Lipids 31, 1141–1149 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Kim, J. K. et al. Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. J. Clin. Invest. 113, 756–763 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chibalin, A. V. et al. Downregulation of diacylglycerol kinase delta contributes to hyperglycemia-induced insulin resistance. Cell 132, 375–386 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Stratford, S., Hoehn, K. L., Liu, F. & Summers, S. A. Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J. Biol. Chem. 279, 36608–36615 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944–2950 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Petersen, K. F. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300, 1140–1142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genet. 34, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Petersen, K. F., Dufour, S. & Shulman, G. I. Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med. 2, e233 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Hancock, C. R. et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc. Natl Acad. Sci. USA 7815–7820 (2008).

    Article  CAS  Google Scholar 

  69. Handschin, C. et al. Abnormal glucose homeostasis in skeletal muscle-specific PGC-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk. J. Clin. Invest. 117, 3463–3474 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Koves, T. R. et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell. Metab. 7, 45–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Hotamisligil, G. S., Arner, P., Caro, J. F., Atkinson, R. L. & Spiegelman, B. M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95, 2409–2415 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kressel, G. et al. Systemic and vascular markers of inflammation in relation to metabolic syndrome and insulin resistance in adults with elevated atherosclerosis risk. Atherosclerosis 20 Apr 2008 (doi: 10.1016/j.atherosclerosis.2008.04.012).

    Article  CAS  PubMed  Google Scholar 

  73. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003). The use of expression profiling of adipose tissue in obese mouse models revealed a correlation between obesity and macrophage gene expression, focusing attention on inflammatory pathways that are activated in adipose tissue in obesity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Subramanian, S. et al. Dietary cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 28, 685–691 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gregor, M. F. & Hotamisligil, G. S. Thematic review series: adipocyte biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J. Lipid Res. 48, 1905–1914 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Marciniak, S. J. & Ron, D. Endoplasmic reticulum stress signaling in disease. Physiol. Rev. 86, 1133–1149 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    Article  PubMed  CAS  Google Scholar 

  82. Shoelson, S. E., Lee, J. & Goldfine, A. B. Inflammation and insulin resistance. J. Clin. Invest. 116, 1793–1801 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gargalovic, P. S. et al. Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc. Natl Acad. Sci. USA 103, 12741–12746 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tabas, I. Apoptosis and efferocytosis in mouse models of atherosclerosis. Curr. Drug Targets 8, 1288–1296 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikk β. Science 293, 1673–1677 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Park, E., Wong, V., Guan, X., Oprescu, A. I. & Giacca, A. Salicylate prevents hepatic insulin resistance caused by short-term elevation of free fatty acids in vivo. J. Endocrinol. 195, 323–331 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Clee, S. M. et al. Positional cloning of Sorcs1, a type 2 diabetes quantitative trait locus. Nature Genet. 38, 688–693 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Schreyer, S. A., Vick, C., Lystig, T. C., Mystkowski, P. & LeBoeuf, R. C. LDL receptor but not apolipoprotein E deficiency increases diet-induced obesity and diabetes in mice. Am. J. Physiol. Endocrinol. Metab. 282, E207–E214 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Schwartz, S. M., Galis, Z. S., Rosenfeld, M. E. & Falk, E. Plaque rupture in humans and mice. Arterioscler. Thromb. Vasc. Biol. 27, 705–713 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Navab, M., Anantharamaiah, G. M. & Fogelman, A. M. The role of high-density lipoprotein in inflammation. Trends Cardiovasc. Med. 15, 158–161 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Hsueh, W. et al. Recipes for creating animal models of diabetic cardiovascular disease. Circ. Res. 100, 1415–1427 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Soro-Paavonen, A. et al. Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 57, 2461–2469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Abel, E. D., Litwin, S. E. & Sweeney, G. Cardiac remodeling in obesity. Physiol. Rev. 88, 389–419 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Fonarow, G. C., Srikanthan, P., Costanzo, M. R., Cintron, G. B. & Lopatin, M. An obesity paradox in acute heart failure: analysis of body mass index and inhospital mortality for 108,927 patients in the Acute Decompensated Heart Failure National Registry. Am. Heart J. 153, 74–81 (2007).

    Article  PubMed  Google Scholar 

  96. Carley, A. N. & Severson, D. L. What are the biochemical mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic db/db mice? Cardiovasc. Drugs Ther. 22, 83–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Boudina, S. et al. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112, 2686–2695 (2005).

    Article  PubMed  Google Scholar 

  98. Park, T. S. et al. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J. Lipid Res. 49, 2101–2112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Patti, M. E. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl Acad. Sci. USA 100, 8466–8471 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Balling, R. From mouse genetics to systems biology. Mamm. Genome 18, 383–388 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Tegner, J., Skogsberg, J. & Bjorkegren, J. Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Multi-organ whole-genome measurements and reverse engineering to uncover gene networks underlying complex traits. J. Lipid Res. 48, 267–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Weiss, J. N., Yang, L. & Qu, Z. Systems biology approaches to metabolic and cardiovascular disorders: network perspectives of cardiovascular metabolism. J. Lipid Res. 47, 2355–2366 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. USA 104, 1777–1782 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Drake, T. A., Schadt, E. E. & Lusis, A. J. Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice. Mamm. Genome 17, 466–479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008). Molecular network analysis in a segregating mouse population identified gene networks that exhibit a causal relationship with MetSyn traits. The results revealed a macrophage-enriched network and novel obesity genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Petretto, E., Mangion, J., Pravanec, M., Hubner, N. & Aitman, T. J. Integrated gene expression profiling and linkage analysis in the rat. Mamm. Genome 17, 480–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Petretto, E. et al. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nature Genet. 40, 546–552 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Pravenec, M. et al. Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nature Genet. 40, 952–954 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Meng, H. et al. Identification of Abcc6 as the major causal gene for dystrophic cardiac calcification in mice through integrative genomics. Proc. Natl Acad. Sci. USA 104, 4530–4535 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schadt, E. E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genet. 37, 710–717 (2005). This study describes a method to distinguish causative versus reactive relationships between traits and gene expression levels. Here, this strategy was applied to identify novel obesity-associated genes, and will be applicable to many complex diseases.

    Article  CAS  PubMed  Google Scholar 

  113. Gargalovic, P. S. et al. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26, 2490–2496 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Ferrara, C. T. et al. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling. PLoS Genet. 4, e1000034 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Adiels, M., Olofsson, S. O., Taskinen, M. R. & Boren, J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 28, 1225–1236 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Toma, I. et al. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J. Clin. Invest. 118, 2526–2534 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Libby, P. & Theroux, P. Pathophysiology of coronary artery disease. Circulation 111, 3481–3488 (2005).

    Article  PubMed  Google Scholar 

  119. Despres, J. P. et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol. 28, 1039–1049 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Brietzke, S. A. Controversy in diagnosis and management of the metabolic syndrome. Med. Clin. North Am. 91, 1041–1061, vii–viii (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Federspil, G., Nisoli, E. & Vettor, R. A critical reflection on the definition of metabolic syndrome. Pharmacol. Res. 53, 449–456 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Gluckman, P. D. Evolving a definition of disease. Arch. Dis. Child. 92, 1053–1054 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Reinehr, T., de Sousa, G., Toschke, A. M. & Andler, W. Comparison of metabolic syndrome prevalence using eight different definitions: a critical approach. Arch. Dis. Child. 92, 1067–1072 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ford, E. S., Giles, W. H. & Dietz, W. H. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287, 356–359 (2002).

    Article  PubMed  Google Scholar 

  125. Kahn, R. Metabolic syndrome: is it a syndrome? Does it matter? Circulation 115, 1806–1810; discussion 1811 (2007).

    Article  PubMed  Google Scholar 

  126. Grundy, S. M. Metabolic syndrome pandemic. Arterioscler. Thromb. Vasc. Biol. 28, 629–636 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Chambers, J. C. et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nature Genet. 40, 716–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Stratigopoulos, G. et al. Regulation of Fto/Ftm gene expression in mice and humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1185–R1196 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Kooner, J. S. et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nature Genet. 40, 149–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Grant, S. F. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nature Genet. 38, 320–3 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Nadeau, J. H. et al. Pleiotropy, homeostasis, and functional networks based on assays of cardiovascular traits in genetically randomized populations. Genome Res. 13, 2082–2091 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Willer, C. J. et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nature Genet. 40, 161–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Ghazalpour, A. et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2, e130 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues for valuable discussion, C. Farber and A. Ghazalpour for help with figures, and R. Chen for secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldons J. Lusis.

Related links

Related links

FURTHER INFORMATION

Attie laboratory diabetes database

Genomics of Lipid Associated Disorders Database

Complex Trait Consortium

The GeneNetwork

The Jackson Laboratory, Mouse Phenome Database

Glossary

Insulin resistance

A condition in which normal amounts of insulin are inadequate to produce a normal response from muscle, fat, liver or other cells. Such insulin resistance can result in elevated glucose levels in the blood owing to decreased uptake by cells, as well as effects on glycogen storage and lipid metabolism.

Dyslipidaemia

An abnormal or atypical pattern of lipoproteins in the blood. Examples include low levels of high-density lipoprotein cholesterol (hypoalphalipoproteinaemia), or elevated levels of triglyceride (hypertriglyceridaemia) or cholesterol (hypercholesterolaemia).

Genome-wide association study

(GWA study). An examination of common genetic variation across the genome designed to identify associations with traits such as common diseases. Typically, several hundred thousand SNPs are interrogated using microarray technologies.

High-density lipoprotein

(HDL). One of five classes of lipoproteins in the blood that transport cholesterol and triglycerides between tissues. HDL levels are inversely correlated with cardiovascular disease and thus are hypothesized to be protective, perhaps by removing cholesterol from atheroma.

Heritability

An estimate of the proportion of genetic variation in a population that is attributable to genetic variation among individuals.

Linkage analysis

Analysis of the segregation patterns of alleles or loci in families or experimental crosses. Such analysis is commonly used to map genetic traits by testing whether a trait co-segregates with genetic markers whose chromosomal locations are known.

Quantitative trait locus

(QTL). A genetic locus that influences complex and usually continuous traits, such as blood pressure or cholesterol levels. QTLs are identified using linkage analysis.

Linkage disequilibrium

(LD). In population genetics, LD is the nonrandom association of alleles. For example, alleles of SNPs that reside near one another on a chromosome often occur in nonrandom combinations owing to infrequent recombination. LD is useful in genome-wide association studies as it reduces the number of SNPs that must be interrogated to determine genotypes across the genome. Conversely, strong LD can complicate the identification of functional variants. LD should not be confused with genetic linkage, which occurs when genetic loci or alleles are inherited jointly, usually because they reside on the same chromosome.

Visceral fat

Fat that is located inside the peritoneal cavity, between internal organs, as opposed to subcutaneous fat, which is found under the skin, or intramuscular fat, which is interspersed in skeletal muscle.

Correlation

In statistics, a measure of the strength and direction of a linear relationship between two variables. Usually measured as a correlation coefficient.

Epigenetics

Changes in gene expression that are stable through cell division but do not involve changes in the underlying DNA sequence. The most common example is cellular differentiation, but it is clear that environmental factors, such as maternal nutrition, can influence epigenetic programming.

Ceramide

A family of lipid molecules composed of sphingosine and a fatty acid. In addition to being structural components of lipid bilayers, it is now clear that ceramides can act as signalling molecules.

Oxidative phosphorylation

A metabolic pathway that uses oxidation of nutrients to generate ATP. The electron transport chain in mitochondria is the site of oxidative phosphorylation in eukaryotes.

Haploinsufficiency

A condition in a diploid organism in which a single functional copy of a gene results in a phenotype, such as a disease.

Genetically randomized population

A population in which genotypes are randomized owing to the random assortment of alleles during gametogenesis.

Conditional probability

The probability of an event, A, given the occurrence of some other event, B.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lusis, A., Attie, A. & Reue, K. Metabolic syndrome: from epidemiology to systems biology. Nat Rev Genet 9, 819–830 (2008). https://doi.org/10.1038/nrg2468

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2468

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing