Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prioritization for liver transplantation

Abstract

There are three possible policies for prioritization for liver transplantation: medical urgency, utility and transplant benefit. The first is based on the severity of cirrhosis, using Child–Turcotte–Pugh score and, more recently, the Model for End-stage Liver Disease (MELD) score, or variants of MELD, for allocation. Although prospectively developed and validated, the MELD score has several limitations, including interlaboratory variations for measurement of serum creatinine and international normalized ratio of prothrombin time, and a systematic adverse female gender bias. Adjustments to the original MELD equation and new scoring systems have been proposed to overcome these limitations; incorporation of serum sodium improves its predictive accuracy. The MELD score poorly predicts outcomes after liver transplantation due to the absence of donor factors incorporated into the scoring system. Several utility models are based on donor and recipient characteristics. Combined poor recipient and donor characteristics lead to very poor outcomes, which in a utility system would be considered unacceptable. Finally, transplant benefit models rank patients according to the net survival benefit that they would derive from transplantation. However, complex statistical models are required, and unmeasured characteristics may unduly affect the models. Well-designed prospective studies and simulation models are necessary to establish the optimal allocation system in liver transplantation.

Key Points

  • There are three possible policies for prioritization for liver transplantation: medical urgency, utility and transplant benefit

  • In an urgency policy, patients with worse outcomes on the waiting list are given higher priority for transplantation (based on the Child–Turcotte–Pugh score or the Model for End-stage Liver Disease [MELD] score)

  • The advantages of the MELD score are its statistical validation and the use of objective and widely available laboratory tests; however, the MELD score has important limitations

  • Adjustments to the original MELD equation and new scoring systems have been proposed to overcome these limitations; incorporation of serum sodium improves its predictive accuracy

  • The utility-based systems are based on post-transplant outcome, taking into account donor and recipient characteristics; the MELD score poorly predicts outcomes after liver transplantation due to the absence of donor factors

  • The transplant benefit models rank patients according to the net survival benefit that they would derive from transplantation; these models maximize the lifetime gained through liver transplantation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adam, R. & Hoti, E. Liver transplantation: the current situation. Semin. Liver Dis. 29, 3–18 (2009).

    Article  PubMed  Google Scholar 

  2. Cholongitas, E. et al. Systematic review: the model for end-stage liver disease—should it replace Child–Pugh's classification for assessing prognosis in cirrhosis? Aliment. Pharmacol. Ther. 22, 1079–1089 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Freeman, R. B., Jamieson, N., Schaubel, D. E., Porte, R. J. & Villamil, F. G. Who should get a liver graft? J. Hepatol. 50, 664–673 (2009).

    Article  PubMed  Google Scholar 

  4. Durand, F. & Valla, D. Assessment of prognosis of cirrhosis. Semin. Liver Dis. 28, 110–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Eurotransplant International Foundation. Eurotransplant [online], (2010).

  6. Christensen, E. Prognostic models including the Child–Pugh, MELD and Mayo risk scores—where are we and where should we go? J. Hepatol. 41, 344–350 (2004).

    Article  PubMed  Google Scholar 

  7. Asrani, S. & Kim, W. R. Organ allocation for chronic liver disease: model for end-stage liver disease and beyond. Curr. Opin. Gastroenterol. 26, 209–213 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Neuberger, J. et al. Selection of patients for liver transplantation and allocation of donated livers in the UK. Gut 57, 252–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Feng, S. et al. Characteristics associated with liver graft failure: the concept of a donor risk index. Am. J. Transplant. 6, 783–790 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Pugh, R., Murray-lyon, I. & Dawson, J. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg. 60, 646–649 (1973).

    Article  CAS  PubMed  Google Scholar 

  11. Durand, F. & Valla, D. Assessment of the prognosis of cirrhosis: Child–Pugh versus MELD. J. Hepatol. 42 (Suppl.), S100–S107 (2005).

    Article  PubMed  Google Scholar 

  12. Freeman, R. B. Jr et al. The new liver allocation system: moving toward evidence-based transplantation policy. Liver Transpl. 8, 851–858 (2002).

    Article  PubMed  Google Scholar 

  13. Gonwa, T. A. et al. Continued influence of preoperative renal function on outcome of orthotopic liver transplant (OLTX) in the US: where will MELD lead us? Am. J. Transplant. 6, 2651–2659 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Papatheodoridis, G. V. et al. MELD vs Child–Pugh and creatinine-modified Child–Pugh score for predicting survival in patients with decompensated cirrhosis. World J. Gastroenterol. 11, 3099–3104 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huo, T. I. et al. Proposal of a modified Child–Turcotte–Pugh scoring system and comparison with the model for end-stage liver disease for outcome prediction in patients with cirrhosis. Liver Transpl. 12, 65–71 (2006).

    Article  PubMed  Google Scholar 

  16. Mishra, P., Desai, N., Alexander, J., Singh, D. P. & Sawant, P. Applicability of MELD as a short-term prognostic indicator in patients with chronic liver disease: an Indian experience. J. Gastroenterol. Hepatol. 22, 1232–1235 (2007).

    Article  PubMed  Google Scholar 

  17. Malinchoc, M. et al. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 31, 864–871 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Kamath, P. S. et al. A model to predict survival in patients with end-stage liver disease. Hepatology 33, 464–470 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Wiesner, R. et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 124, 91–96 (2003).

    Article  PubMed  Google Scholar 

  20. Heuman, D. & Mihas, A. Utility of the MELD score for assessing 3-month survival in patients with liver cirrhosis: one more positive answer. Gastroenterology 125, 992–993 (2003).

    Article  PubMed  Google Scholar 

  21. Cholongitas, E. et al. A systematic review of the performance of the model for end-stage liver disease (MELD) in the setting of liver transplantation. Liver Transpl. 12, 1049–1061 (2006).

    Article  PubMed  Google Scholar 

  22. Attia, K. A. et al. Child–Pugh–Turcott versus Meld score for predicting survival in a retrospective cohort of black African cirrhotic patients. World J. Gastroenterol. 14, 286–291 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boursier, J., Cesbron, E., Tropet, A. L. & Pilette, C. Comparison and improvement of MELD and Child–Pugh score accuracies for the prediction of 6-month mortality in cirrhotic patients. J. Clin. Gastroenterol. 43, 580–585 (2009).

    Article  PubMed  Google Scholar 

  24. Perkins, J. D. et al. Should liver transplantation in patients with model for end-stage liver disease scores <or= 14 be avoided? A decision analysis approach. Liver Transpl. 15, 242–254 (2009).

    Article  PubMed  Google Scholar 

  25. United Network for Organ Sharing. UNOS [online], (2010).

  26. Merion, R. M. et al. The survival benefit of liver transplantation. Am. J. Transplant. 5, 307–313 (2005).

    Article  PubMed  Google Scholar 

  27. Wiesner, R. H. Patient selection in an era of donor liver shortage: current US policy. Nat. Clin. Pract. Gastroenterol. Hepatol. 2, 24–30 (2005).

    Article  PubMed  Google Scholar 

  28. Freeman, R., Wiesner, R. & Edwards, E. Results of the first year of the new liver allocation plan. Liver Transpl. 10, 7–15 (2004).

    Article  PubMed  Google Scholar 

  29. Trotter, J. F., Brimhall, B., Arjal, R. & Phillips, C. Specific laboratory methodologies achieve higher model for endstage liver disease (MELD) scores for patients listed for liver transplantation. Liver Transpl. 10, 995–1000 (2004).

    Article  PubMed  Google Scholar 

  30. Porte, R. J., Lisman, T., Tripodi, A., Caldwell, S. H. & Trotter, J. F. The International Normalized Ratio (INR) in the MELD score: problems and solutions. Am. J. Transplant. 10, 1349–1353 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Goulding, C. et al. Assessment of reproducibility of creatinine measurement and MELD scoring in four liver transplant units in the UK. Nephrol. Dial. Transplant. 25, 960–966 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Cholongitas, E. et al. Different methods of creatinine measurement significantly affect MELD scores. Liver Transpl. 13, 523–529 (2007).

    Article  PubMed  Google Scholar 

  33. Perrone, R. D., Madias, N. E. & Levey, A. S. Serum creatinine as an index of renal function: new insights into old concepts. Clin. Chem. 38, 1933–1953 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Levey, A. S., Perrone, R. D. & Madias, N. E. Serum creatinine and renal function. Annu. Rev. Med. 39, 465–490 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Lim, Y. et al. Serum sodium, renal function and survival of patients with end-stage liver disease. J. Hepatol. 52, 523–528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cholongitas, E. et al. Female liver transplant recipients with the same GFR as male recipients have lower MELD scores—a systematic bias. Am. J. Transplant. 7, 685–692 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Moylan, C. A. et al. Disparities in liver transplantation before and after introduction of the MELD score. JAMA 300, 2371–2378 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Axelrod, D. A. & Pomfret, E. A. Race and sex disparities in liver transplantation: progress toward achieving equal access? JAMA 300, 2425–2426 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Lai, J. et al. Height explains the gender difference in wait-list mortality under the MELD-based liver allocation system. Am. J. Transplant. (in press).

  40. Cholongitas, E., Germani, G., Tsochatzis, E. & Burroughs, A. K. Towards a better liver allocation system. J. Hepatol. 51, 827–828 (2009).

    Article  PubMed  Google Scholar 

  41. Huo, S. et al. Is the corrected-creatinine model for end-stage liver disease a feasible strategy to adjust gender difference in organ allocation for liver transplantation? Transplantation 84, 1406–1412 (2007).

    Article  PubMed  Google Scholar 

  42. Cholongitas, E. et al. Review article: renal function assessment in cirrhosis—difficulties and alternative measurements. Aliment. Pharmacol. Ther. 26, 969–978 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Xirouchakis, E. et al. Comparison of cystatin C and creatinine based glomerular filtration rate formulae with 51Cr-EDTA clearance in patients with cirrhosis. Clin. J. Am. Soc. Nephrol. doi:10.2215/CJN.03400410.

    Article  PubMed  CAS  Google Scholar 

  44. Sharma, P., Schaubel, D. E., Sima, C. S., Merion, R. M. & Lok, A. S. Re-weighting the model for end-stage liver disease score components. Gastroenterology 135, 1575–1581 (2008).

    Article  PubMed  Google Scholar 

  45. Wang, Y. W. et al. Correlation and comparison of the model for end-stage liver disease, portal pressure, and serum sodium for outcome prediction in patients with liver cirrhosis. J. Clin. Gastroenterol. 41, 706–712 (2007).

    Article  PubMed  Google Scholar 

  46. Somsouk, M. et al. Ascites improves upon [corrected] serum sodium plus [corrected] model for end-stage liver disease (MELD) for predicting mortality in patients with advanced liver disease. Aliment. Pharmacol. Ther. 30, 741–748 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arvaniti, V. et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology doi:10.1053/j.gastro.2010.06.019.

    Article  Google Scholar 

  48. Heuman, D. M. et al. Persistent ascites and low serum sodium identify patients with cirrhosis and low MELD scores who are at high risk for early death. Hepatology 40, 802–810 (2004).

    Article  PubMed  Google Scholar 

  49. Saab, S. et al. MELD fails to measure quality of life in liver transplant candidates. Liver Transpl. 11, 218–223 (2005).

    Article  PubMed  Google Scholar 

  50. Atkinson, M., Paton, A. & Sherlock, S. Control of ascites in hepatic cirrhosis. Lancet 266, 128–129 (1954).

    Article  CAS  PubMed  Google Scholar 

  51. Sherlock, S., Summerskill, W. H., White, L. P. & Phear, E. A. Portal-systemic encephalopathy; neurological complications of liver disease. Lancet 267, 454–457 (1954).

    CAS  PubMed  Google Scholar 

  52. Kamath, P. S. & Kim, W. R. The model for end-stage liver disease (MELD). Hepatology 45, 797–805 (2007).

    Article  PubMed  Google Scholar 

  53. Ruf, A. E. et al. Addition of serum sodium into the MELD score predicts waiting list mortality better than MELD alone. Liver Transpl. 11, 336–343 (2005).

    Article  PubMed  Google Scholar 

  54. Biggins, S. W. et al. Serum sodium predicts mortality in patients listed for liver transplantation. Hepatology 41, 32–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Londono, M. C. et al. MELD score and serum sodium in the prediction of survival of patients with cirrhosis awaiting liver transplantation. Gut 56, 1283–1290 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huo, T. I. et al. Model for end-stage liver disease score to serum sodium ratio index as a prognostic predictor and its correlation with portal pressure in patients with liver cirrhosis. Liver Int. 27, 498–506 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Luca, A. et al. An integrated MELD model including serum sodium and age improves the prediction of early mortality in patients with cirrhosis. Liver Transpl. 13, 1174–1180 (2007).

    Article  PubMed  Google Scholar 

  58. Biggins, S. W. et al. Evidence-based incorporation of serum sodium concentration into MELD. Gastroenterology 130, 1652–1660 (2006).

    Article  PubMed  Google Scholar 

  59. Kim, W. R. et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N. Engl. J. Med. 359, 1018–1026 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Barber, K., Pioli, S. & Blackwell, J. Development of a UK score for patients with end-stage liver disease. Hepatology 46, 510A (2007).

    Google Scholar 

  61. NHS Blood and Transplant [online], (2010).

  62. Yun, B., Kim, W. & Benson, J. Impact of pretransplant hyponatremia on outcome following liver transplantation. Hepatology 49, 1610–1615 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Xiol, X. et al. Clinically relevant differences in the model for end-stage liver disease and model for end-stage liver disease-sodium scores determined at three university-based laboratories of the same area. Liver Transpl. 15, 300–305 (2009).

    Article  PubMed  Google Scholar 

  64. Heuman, D. M. et al. MELD-XI: a rational approach to “sickest first” liver transplantation in cirrhotic patients requiring anticoagulant therapy. Liver Transpl. 13, 30–37 (2007).

    Article  PubMed  Google Scholar 

  65. Tripodi, A. et al. The international normalized ratio calibrated for cirrhosis (INR(liver)) normalizes prothrombin time results for model for end-stage liver disease calculation. Hepatology 46, 520–527 (2007).

    Article  PubMed  Google Scholar 

  66. Huo, T. I. et al. Evaluation of the increase in model for end-stage liver disease (DeltaMELD) score over time as a prognostic predictor in patients with advanced cirrhosis: risk factor analysis and comparison with initial MELD and Child–Turcotte–Pugh score. J. Hepatol. 42, 826–832 (2005).

    Article  PubMed  Google Scholar 

  67. Merion, R. M. et al. Longitudinal assessment of mortality risk among candidates for liver transplantation. Liver Transpl. 9, 12–18 (2003).

    Article  PubMed  Google Scholar 

  68. Bambha, K. et al. Predicting survival among patients listed for liver transplantation: an assessment of serial MELD measurements. Am. J. Transplant. 4, 1798–1804 (2004).

    Article  PubMed  Google Scholar 

  69. Choi, P. C. et al. Model for end-stage liver disease, model for end-stage liver disease-sodium and Child–Turcotte–Pugh scores over time for the prediction of complications of liver cirrhosis. Liver Int. 29, 221–226 (2009).

    Article  PubMed  Google Scholar 

  70. Bae, W. K. et al. Usefulness of DeltaMELD/month for prediction of the mortality in the first episode of variceal bleeding patients with liver cirrhosis: comparison with CTP, MELD score and DeltaCTP/month [Korean]. Korean J. Hepatol. 13, 51–60 (2007).

    PubMed  Google Scholar 

  71. Thuluvath, P. J. et al. Liver transplantation in the United States, 1999–2008. Am. J. Transplant. 10, 1003–1019 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Sharma, P., Schaubel, D. E., Sima, C. S., Merion, R. M. & Lok, A. S. Re-weighting the model for end-stage liver disease score components. Gastroenterology 135, 1575–1581 (2008).

    Article  PubMed  Google Scholar 

  73. Sharma, P., Schaubel, D. E., Guidinger, M. K. & Merion, R. M. Effect of pretransplant serum creatinine on the survival benefit of liver transplantation. Liver Transpl. 15, 1808–1813 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jacob, M. et al. Pretransplant MELD score and post liver transplantation survival in the UK and Ireland. Liver Transpl. 10, 903–907 (2004).

    Article  PubMed  Google Scholar 

  75. Desai, N. M. et al. Predicting outcome after liver transplantation: utility of the model for end-stage liver disease and a newly derived discrimination function. Transplantation 77, 99–106 (2004).

    Article  PubMed  Google Scholar 

  76. Nagler, E., Van Vlierberghe, H., Colle, I., Troisi, R. & de Hemptinne, B. Impact of MELD on short-term and long-term outcome following liver transplantation: a European perspective. Eur. J. Gastroenterol. Hepatol. 17, 849–856 (2005).

    Article  PubMed  Google Scholar 

  77. Ioannou, G. N. Development and validation of a model predicting graft survival after liver transplantation. Liver Transpl. 12, 1594–1606 (2006).

    Article  PubMed  Google Scholar 

  78. Burroughs, A. K. et al. Towards a better liver transplant allocation system. Liver Transpl. 13, 935–936 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Burroughs, A. K. et al. 3-month and 12-month mortality after first liver transplant in adults in Europe: predictive models for outcome. Lancet 367, 225–232 (2006).

    Article  PubMed  Google Scholar 

  80. Stewart, Z. A. et al. Increased risk of graft loss from hepatic artery thrombosis after liver transplantation with older donors. Liver Transpl. 15, 1688–1695 (2009).

    Article  PubMed  Google Scholar 

  81. Halldorson, J. B., Bakthavatsalam, R., Fix, O., Reyes, J. D. & Perkins, J. D. D-MELD, a simple predictor of post liver transplant mortality for optimization of donor/recipient matching. Am. J. Transplant. 9, 318–326 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Volk, M. L., Lok, A. S., Pelletier, S. J., Ubel, P. A. & Hayward, R. A. Impact of the model for end-stage liver disease allocation policy on the use of high-risk organs for liver transplantation. Gastroenterology 135, 1568–1574 (2008).

    Article  PubMed  Google Scholar 

  83. Schaubel, D. E., Sima, C. S., Goodrich, N. P., Feng, S. & Merion, R. M. The survival benefit of deceased donor liver transplantation as a function of candidate disease severity and donor quality. Am. J. Transplant. 8, 419–425 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Schaubel, D. E. et al. Survival benefit-based deceased-donor liver allocation. Am. J. Transplant. 9, 970–981 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ravaioli, M. et al. Survival benefit after liver transplantation: a single European center experience. Transplantation 88, 826–834 (2009).

    Article  PubMed  Google Scholar 

  86. Lucey, M. R., Schaubel, D. E., Guidinger, M. K., Tome, S. & Merion, R. M. Effect of alcoholic liver disease and hepatitis C infection on waiting list and posttransplant mortality and transplant survival benefit. Hepatology 50, 400–406 (2009).

    Article  PubMed  Google Scholar 

  87. Huo, T. I. et al. Comparison of four model for end-stage liver disease-based prognostic systems for cirrhosis. Liver Transpl. 14, 837–844 (2008).

    Article  PubMed  Google Scholar 

  88. Biselli, M. et al. Six score systems to evaluate candidates with advanced cirrhosis for orthotopic liver transplant: which is the winner? Liver Transpl. 16, 964–973 (2010).

    Article  PubMed  Google Scholar 

  89. Schemper, M. Predictive accuracy and explained variation. Stat. Med. 22, 2299–2308 (2003).

    Article  PubMed  Google Scholar 

  90. Kalil, A. C., Mattei, J., Florescu, D. F., Sun, J. & Kalil, R. S. Recommendations for the assessment and reporting of multivariable logistic regression in transplantation literature. Am. J. Transplant. 10, 1686–1694 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cucchetti, A. et al. Artificial neural network is superior to MELD in predicting mortality of patients with end-stage liver disease. Gut 56, 253–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Lucey, M. R. How will patients be selected for transplantation in the future? Liver Transpl. 10, S90–S92 (2004).

    Article  PubMed  Google Scholar 

  93. Martin, A. P., Bartels, M., Hauss, J. & Fangmann, J. Overview of the MELD score and the UNOS adult liver allocation system. Transplant Proc. 39, 3169–3174 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Schaffer, R. L. III, Kulkarni, S., Harper, A., Millis, J. M. & Cronin, D. C. The sickest first? Disparities with model for end-stage liver disease-based organ allocation: one region's experience. Liver Transpl. 9, 1211–1215 (2003).

    Article  PubMed  Google Scholar 

  95. Dureja, P. & Lucey, M. R. Disparities in liver transplantation in the post-model for end-stage liver disease era: are we there yet? Hepatology 50, 981–984 (2009).

    Article  PubMed  Google Scholar 

  96. Weismuller, T. J. et al. The introduction of MELD-based organ allocation impacts 3-month survival after liver transplantation by influencing pretransplant patient characteristics. Transpl. Int. 22, 970–978 (2009).

    Article  PubMed  CAS  Google Scholar 

  97. Washburn, W. K., Meo, N. A., Halff, G. A., Roberts, J. P. & Feng, S. Factors influencing liver transplant length of stay at two large-volume transplant centers. Liver Transpl. 15, 1570–1578 (2009).

    Article  PubMed  Google Scholar 

  98. Foxton, M. R. et al. Increased model for end-stage liver disease score at the time of liver transplant results in prolonged hospitalization and overall intensive care unit costs. Liver Transpl. 16, 668–677 (2010).

    Article  PubMed  Google Scholar 

  99. Egan, T. M. et al. Development of the new lung allocation system in the United States. Am. J. Transplant. 6, 1212–1227 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Byrne, T. et al. Does MELD score influence post-transplant quality of life? Hepatology 40, 765A (2004).

    Google Scholar 

  101. Kamath, P. S. & Kim, W. R. Is the change in MELD score a better indicator of mortality than baseline MELD score? Liver Transpl. 9, 19–21 (2003).

    Article  PubMed  Google Scholar 

  102. Neuberger, J. Allocation of donor livers—is MELD enough? Liver Transpl. 10, 908–910 (2004).

    Article  PubMed  Google Scholar 

  103. Freeman, R. B. Mathematical models and behavior: assessing delta MELD for liver allocation. Am. J. Transplant. 4, 1735–1736 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E. Cholongitas contributed to the research, discussion of content and writing of the article. G. Germani contributed to the research and discussion of content. A. K. Burroughs contributed to the discussion of content, writing and reviewing of the article.

Corresponding author

Correspondence to Andrew K. Burroughs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cholongitas, E., Germani, G. & Burroughs, A. Prioritization for liver transplantation. Nat Rev Gastroenterol Hepatol 7, 659–668 (2010). https://doi.org/10.1038/nrgastro.2010.169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2010.169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing