Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Barrett esophagus: an update

Abstract

Many developments have been made in the field of Barrett esophagus that have tremendous clinical implications. There are new definitions of Barrett esophagus that have had an immediate clinical impact on cancer risk and screening. Of interest is the definition by the British Society of Gastroenterology, which does not require the presence of intestinal metaplasia for a diagnosis of Barrett esophagus. Imaging techniques that allow improved visualization of intestinal metaplasia at the cellular level are now being used in clinical practice. New hypotheses elucidating the progression from squamous epithelium to intestinal metaplasia have been proposed. Indeed, the crucial role that transcription factors have in the pathogenesis of Barrett esophagus has been clarified. Improved characterization of the molecular mechanisms underlying Barrett esophagus is an incentive to undertake more basic science research in this field. Such research could also help with the development of chemoprevention strategies for this precancerous condition. This Review discusses the advances in understanding of the pathogenesis, diagnosis and treatment of Barrett esophagus.

Key Points

  • The field of Barrett esophagus is evolving, with advances in understanding of the pathogenesis, diagnosis and treatment of this premalignant condition

  • In the USA, the presence of both salmon-colored mucosa on upper endoscopy and specialized intestinal metaplasia in biopsy specimens is required to diagnose Barrett esophagus

  • New concepts regarding the pathogenesis of Barrett esophagus have been elucidated; CDX2 and BMP4 are thought to have a key role in the pathogenesis of this condition

  • New imaging techniques, such as narrow band imaging and confocal laser microscopy, are helping in the diagnosis of Barrett esophagus

  • Ablative techniques, including radiofrequency ablation, are becoming increasingly accepted treatments for Barrett esophagus given their low complication rate and high eradication rate

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Prague classification of Barrett esophagus.
Figure 2: Molecular pathways involved in the development of Barrett esophagus.
Figure 3
Figure 4
Figure 5: Algorithm for the management of patients with Barrett esophagus.

Similar content being viewed by others

References

  1. Wang, K. K. & Sampliner, R. E. Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett's esophagus. Am. J. Gastroenterol. 103, 788–797 (2008).

    Article  PubMed  Google Scholar 

  2. Playford, R. J. New British Society of Gastroenterology (BSG) guidelines for the diagnosis and management of Barrett's oesophagus. Gut 55, 442 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kerkhof, M., Steyerberg, E. W., Kusters, J. G., Kuipers, E. J. & Siersema, P. D. Predicting presence of intestinal metaplasia and dysplasia in columnar-lined esophagus: a multivariate analysis. Endoscopy 39, 772–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. van Baal, J. W. et al. A comparative analysis by SAGE of gene expression profiles of Barrett's esophagus, normal squamous esophagus, and gastric cardia. Gastroenterology 129, 1274–1281 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Kelty, C. J., Gough, M. D., Van Wyk, Q., Stephenson, T. J. & Ackroyd, R. Barrett's oesophagus: intestinal metaplasia is not essential for cancer risk. Scand. J. Gastroenterol. 42, 1271–1274 (2007).

    Article  PubMed  Google Scholar 

  6. Sharma, P. et al. The development and validation of an endoscopic grading system for Barrett's esophagus: the Prague C & M criteria. Gastroenterology 131, 1392–1399 (2006).

    Article  PubMed  Google Scholar 

  7. Bytzer, P., Christensen, P. B., Damkier, P., Vinding, K. & Seersholm, N. Adenocarcinoma of the esophagus and Barrett's esophagus: a population-based study. Am. J. Gastroenterol. 94, 86–91 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Harrison, R. et al. Detection of intestinal metaplasia in Barrett's esophagus: an observational comparator study suggests the need for a minimum of eight biopsies. Am. J. Gastroenterol. 102, 1154–1161 (2007).

    Article  PubMed  Google Scholar 

  9. Montgomery, E. et al. Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation. Hum. Pathol. 32, 368–378 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Odze, R. D. Barrett esophagus: histology and pathology for the clinician. Nat. Rev. Gastroenterol. Hepatol. 6, 478–490 (2009).

    Article  PubMed  Google Scholar 

  11. Eisen, G. M., Sandler, R. S., Murray, S. & Gottfried, M. The relationship between gastroesophageal reflux disease and its complications with Barrett's esophagus. Am. J. Gastroenterol. 92, 27–31 (1997).

    CAS  PubMed  Google Scholar 

  12. Chiu, P. W. et al. Esophageal pH exposure and epithelial cell differentiation. Dis. Esophagus 22, 596–599 (2009).

    Article  PubMed  Google Scholar 

  13. Fletcher, J., Wirz, A., Henry, E. & McColl, K. E. Studies of acid exposure immediately above the gastro-oesophageal squamocolumnar junction: evidence of short segment reflux. Gut 53, 168–173 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Farre, R. et al. Critical role of stress in increased oesophageal mucosa permeability and dilated intercellular spaces. Gut 56, 1191–1197 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jovov, B. et al. Claudin-18: a dominant tight junction protein in Barrett's esophagus and likely contributor to its acid resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G1106–G1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Fletcher, J., Wirz, A., Young, J., Vallance, R. & McColl, K. E. Unbuffered highly acidic gastric juice exists at the gastroesophageal junction after a meal. Gastroenterology 121, 775–783 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Iijima, K. et al. Dietary nitrate generates potentially mutagenic concentrations of nitric oxide at the gastroesophageal junction. Gastroenterology 122, 1248–1257 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Spechler, S. J. Review article: what I do now to manage adenocarcinoma risk, and what I may be doing in 10 years' time. Aliment. Pharmacol. Ther. 20 (Suppl. 5), 105–110 (2004).

    Article  PubMed  Google Scholar 

  19. Clemons, N. J., McColl, K. E. & Fitzgerald, R. C. Nitric oxide and acid induce double-strand DNA breaks in Barrett's esophagus carcinogenesis via distinct mechanisms. Gastroenterology 133, 1198–1209 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Chak, A. et al. Familial aggregation of Barrett's oesophagus, oesophageal adenocarcinoma, and oesophagogastric junctional adenocarcinoma in Caucasian adults. Gut 51, 323–328 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gerson, L. B., Shetler, K. & Triadafilopoulos, G. Prevalence of Barrett's esophagus in asymptomatic individuals. Gastroenterology 123, 461–467 (2002).

    Article  PubMed  Google Scholar 

  22. Romero, Y. et al. Barrett's esophagus: prevalence in symptomatic relatives. Am. J. Gastroenterol. 97, 1127–1132 (2002).

    Article  PubMed  Google Scholar 

  23. Romero, Y. et al. Familial aggregation of gastroesophageal reflux in patients with Barrett's esophagus and esophageal adenocarcinoma. Gastroenterology 113, 1449–1456 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Trudgill, N. J., Kapur, K. C. & Riley, S. A. Familial clustering of reflux symptoms. Am. J. Gastroenterol. 94, 1172–1178 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Izzo, J. G. et al. Cyclin D1 guanine/adenine 870 polymorphism with altered protein expression is associated with genomic instability and aggressive clinical biology of esophageal adenocarcinoma. J. Clin. Oncol. 25, 698–707 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Kala, Z., Dolina, J., Marek, F. & Izakovicova Holla, L. Polymorphisms of glutathione S-transferase M1, T1 and P1 in patients with reflux esophagitis and Barrett's esophagus. J. Hum. Genet. 52, 527–534 (2007).

    Article  PubMed  Google Scholar 

  27. Murphy, S. J. et al. A population-based association study of SNPs of GSTP1, MnSOD, GPX2 and Barrett's esophagus and esophageal adenocarcinoma. Carcinogenesis 28, 1323–1328 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Payne, C. M. et al. Mitochondrial perturbation attenuates bile acid-induced cytotoxicity. Cell Biol. Toxicol. 21, 215–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Bernstein, H., Bernstein, C., Payne, C. M., Dvorakova, K. & Garewal, H. Bile acids as carcinogens in human gastrointestinal cancers. Mutat. Res. 589, 47–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Bernstein, H. et al. Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate. Toxicol. Lett. 108, 37–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Dvorak, K. et al. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett's oesophagus. Gut 56, 763–771 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Dvorak, K. et al. Expression of bile acid transporting proteins in Barrett's esophagus and esophageal adenocarcinoma. Am. J. Gastroenterol. 104, 302–309 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rokkas, T., Pistiolas, D., Sechopoulos, P., Robotis, I. & Margantinis, G. Relationship between Helicobacter pylori infection and esophageal neoplasia: a meta-analysis. Clin. Gastroenterol. Hepatol. 5, 1413–1417 (2007).

    Article  PubMed  Google Scholar 

  34. Wang, C., Yuan, Y. & Hunt, R. H. Helicobacter pylori infection and Barrett's esophagus: a systematic review and meta-analysis. Am. J. Gastroenterol. 104, 492–500 (2009).

    Article  PubMed  Google Scholar 

  35. Chow, W. H. et al. An inverse relation between cagA+ strains of Helicobacter pylori infection and risk of esophageal and gastric cardia adenocarcinoma. Cancer Res. 58, 588–590 (1998).

    CAS  PubMed  Google Scholar 

  36. Wu, A. H. et al. Role of Helicobacter pylori CagA+ strains and risk of adenocarcinoma of the stomach and esophagus. Int. J. Cancer 103, 815–821 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Ye, W. et al. Helicobacter pylori infection and gastric atrophy: risk of adenocarcinoma and squamous-cell carcinoma of the esophagus and adenocarcinoma of the gastric cardia. J. Natl Cancer Inst. 96, 388–396 (2004).

    Article  PubMed  Google Scholar 

  38. Malfertheiner, P. et al. Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report. Gut 56, 772–781 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Laine, L. & Sugg, J. Effect of Helicobacter pylori eradication on development of erosive esophagitis and gastroesophageal reflux disease symptoms: a post hoc analysis of eight double blind prospective studies. Am. J. Gastroenterol. 97, 2992–2997 (2002).

    Article  PubMed  Google Scholar 

  40. Malfertheiner, P. et al. Impact of Helicobacter pylori eradication on heartburn in patients with gastric or duodenal ulcer disease—results from a randomized trial programme. Aliment. Pharmacol. Ther. 16, 1431–1442 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. McColl, K. E., Dickson, A., El-Nujumi, A., El-Omar, E. & Kelman, A. Symptomatic benefit 1–3 years after H. pylori eradication in ulcer patients: impact of gastroesophageal reflux disease. Am. J. Gastroenterol. 95, 101–105 (2000).

    CAS  PubMed  Google Scholar 

  42. Kuipers, E. J. et al. Cure of Helicobacter pylori infection in patients with reflux oesophagitis treated with long term omeprazole reverses gastritis without exacerbation of reflux disease: results of a randomised controlled trial. Gut 53, 12–20 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moayyedi, P. et al. Helicobacter pylori eradication does not exacerbate reflux symptoms in gastroesophageal reflux disease. Gastroenterology 121, 1120–1126 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Abrams, J. A. Obesity and Barrett's oesophagus: more than just reflux. Gut 58, 1437–1438 (2009).

    Article  PubMed  Google Scholar 

  45. El-Serag, H. B., Kvapil, P., Hacken-Bitar, J. & Kramer, J. R. Abdominal obesity and the risk of Barrett's esophagus. Am. J. Gastroenterol. 100, 2151–2156 (2005).

    Article  PubMed  Google Scholar 

  46. Kubo, A. & Corley, D. A. Body mass index and adenocarcinomas of the esophagus or gastric cardia: a systematic review and meta-analysis. Cancer Epidemiol. Biomarkers Prev. 15, 872–878 (2006).

    Article  PubMed  Google Scholar 

  47. Lagergren, J., Bergstrom, R. & Nyren, O. Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Ann. Intern. Med. 130, 883–890 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Moayyedi, P. The epidemiology of obesity and gastrointestinal and other diseases: an overview. Dig. Dis. Sci. 53, 2293–2299 (2008).

    Article  PubMed  Google Scholar 

  49. Moayyedi, P. Barrett's esophagus and obesity: the missing part of the puzzle. Am. J. Gastroenterol. 103, 301–303 (2008).

    Article  PubMed  Google Scholar 

  50. Seidel, D., Muangpaisan, W., Hiro, H., Mathew, A. & Lyratzopoulos, G. The association between body mass index and Barrett's esophagus: a systematic review. Dis. Esophagus 22, 564–570 (2009).

    Article  PubMed  Google Scholar 

  51. Corley, D. A. et al. Abdominal obesity and body mass index as risk factors for Barrett's esophagus. Gastroenterology 133, 34–41 (2007).

    Article  PubMed  Google Scholar 

  52. Edelstein, Z. R., Farrow, D. C., Bronner, M. P., Rosen, S. N. & Vaughan, T. L. Central adiposity and risk of Barrett's esophagus. Gastroenterology 133, 403–411 (2007).

    Article  PubMed  Google Scholar 

  53. Kendall, B. J. et al. Leptin and the risk of Barrett's oesophagus. Gut 57, 448–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Rubenstein, J. H. et al. Association of adiponectin multimers with Barrett's oesophagus. Gut 58, 1583–1589 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Milano, F. et al. Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology 132, 2412–2421 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Sarosi, G. et al. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett's esophagus. Dis. Esophagus 21, 43–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Moons, L. M. et al. A pro-inflammatory genotype predisposes to Barrett's esophagus. Carcinogenesis 29, 926–931 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Fitzgerald, R. C. et al. Inflammatory gradient in Barrett's oesophagus: implications for disease complications. Gut 51, 316–322 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fitzgerald, R. C. et al. Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: immunological determinants. Gut 50, 451–459 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Buttar, N. S. et al. Chemoprevention of esophageal adenocarcinoma by COX-2 inhibitors in an animal model of Barrett's esophagus. Gastroenterology 122, 1101–1112 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, T. et al. Regulation of Cdx2 expression by promoter methylation, and effects of Cdx2 transfection on morphology and gene expression of human esophageal epithelial cells. Carcinogenesis 28, 488–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Pera, M. et al. Duodenal-content reflux into the esophagus leads to expression of Cdx2 and Muc2 in areas of squamous epithelium in rats. J. Gastrointest. Surg. 11, 869–874 (2007).

    Article  PubMed  Google Scholar 

  63. Phillips, R. W., Frierson, H. F. Jr & Moskaluk, C. A. Cdx2 as a marker of epithelial intestinal differentiation in the esophagus. Am. J. Surg. Pathol. 27, 1442–1447 (2003).

    Article  PubMed  Google Scholar 

  64. Krishnadath, K. K. Novel findings in the pathogenesis of esophageal columnar metaplasia or Barrett's esophagus. Curr. Opin. Gastroenterol. 23, 440–445 (2007).

    Article  PubMed  Google Scholar 

  65. Seery, J. P. Stem cells of the oesophageal epithelium. J. Cell Sci. 115, 1783–1789 (2002).

    Article  PubMed  Google Scholar 

  66. Dvorak, K. et al. Activation of the interleukin-6/STAT3 antiapoptotic pathway in esophageal cells by bile acids and low pH: relevance to barrett's esophagus. Clin. Cancer Res. 13, 5305–5313 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Kazumori, H., Ishihara, S. & Kinoshita, Y. Roles of caudal-related homeobox gene Cdx1 in oesophageal epithelial cells in Barrett's epithelium development. Gut 58, 620–628 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Kazumori, H., Ishihara, S., Rumi, M. A., Kadowaki, Y. & Kinoshita, Y. Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett's epithelium. Gut 55, 16–25 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chao, D. L. et al. Cell proliferation, cell cycle abnormalities, and cancer outcome in patients with Barrett's esophagus: a long-term prospective study. Clin. Cancer Res. 14, 6988–6995 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lin, O. S. et al. Blinded comparison of esophageal capsule endoscopy versus conventional endoscopy for a diagnosis of Barrett's esophagus in patients with chronic gastroesophageal reflux. Gastrointest. Endosc. 65, 577–583 (2007).

    Article  PubMed  Google Scholar 

  71. Galmiche, J. P. et al. Screening for esophagitis and Barrett's esophagus with wireless esophageal capsule endoscopy: a multicenter prospective trial in patients with reflux symptoms. Am. J. Gastroenterol. 103, 538–545 (2008).

    Article  PubMed  Google Scholar 

  72. Cotruta, B., Gheorghe, C. & Bancila, I. Magnifying endoscopy with narrow-band imaging or confocal laser endomicroscopy for in vivo rapid diagnostic of Barrett's esophagus. J. Gastrointestin. Liver Dis. 18, 258–259 (2009).

    PubMed  Google Scholar 

  73. Curvers, W. et al. Chromoendoscopy and narrow-band imaging compared with high-resolution magnification endoscopy in Barrett's esophagus. Gastroenterology 134, 670–679 (2008).

    Article  PubMed  Google Scholar 

  74. Curvers, W. L. et al. Mucosal morphology in Barrett's esophagus: interobserver agreement and role of narrow band imaging. Endoscopy 40, 799–805 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Fock, K. M., Teo, E. K., Ang, T. L., Tan, J. Y. & Law, N. M. The utility of narrow band imaging in improving the endoscopic diagnosis of gastroesophageal reflux disease. Clin. Gastroenterol. Hepatol. 7, 54–59 (2009).

    Article  PubMed  Google Scholar 

  76. Lee, M. M. & Enns, R. Narrow band imaging in gastroesophageal reflux disease and Barrett's esophagus. Can. J. Gastroenterol. 23, 84–87 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mannath, J., Subramanian, V., Hawkey, C. J. & Ragunath, K. Narrow band imaging for characterization of high grade dysplasia and specialized intestinal metaplasia in Barrett's esophagus: a meta-analysis. Endoscopy 42, 351–359 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Sharma, P. et al. The utility of a novel narrow band imaging endoscopy system in patients with Barrett's esophagus. Gastrointest. Endosc. 64, 167–175 (2006).

    Article  PubMed  Google Scholar 

  79. Singh, R. et al. Narrow-band imaging with magnification in Barrett's esophagus: validation of a simplified grading system of mucosal morphology patterns against histology. Endoscopy 40, 457–463 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Suzuki, H. & Saito, Y. Autofluorescence and narrow-band imaging endoscopy for detecting early-staged cancer in Barrett's esophagus: a case report. Jpn. J. Clin. Oncol. 38, 871 (2008).

    Article  PubMed  Google Scholar 

  81. Wolfsen, H. C. et al. Prospective, controlled tandem endoscopy study of narrow band imaging for dysplasia detection in Barrett's Esophagus. Gastroenterology 135, 24–31 (2008).

    Article  PubMed  Google Scholar 

  82. Sharma, P. et al. Magnification chromoendoscopy for the detection of intestinal metaplasia and dysplasia in Barrett's oesophagus. Gut 52, 24–27 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Goetz, M., Hoffman, A., Galle, P. R., Neurath, M. F. & Kiesslich, R. Confocal laser endoscopy: new approach to the early diagnosis of tumors of the esophagus and stomach. Future Oncol. 2, 469–476 (2006).

    Article  PubMed  Google Scholar 

  84. Goetz, M. & Kiesslich, R. Confocal endomicroscopy: in vivo diagnosis of neoplastic lesions of the gastrointestinal tract. Anticancer Res. 28, 353–360 (2008).

    PubMed  Google Scholar 

  85. Kiesslich, R. et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127, 706–713 (2004).

    Article  PubMed  Google Scholar 

  86. Kiesslich, R. & Canto, M. I. Confocal laser endomicroscopy. Gastrointest. Endosc. Clin. N. Am. 19, 261–272 (2009).

    Article  PubMed  Google Scholar 

  87. Kiesslich, R., Goetz, M. & Neurath, M. F. Confocal laser endomicroscopy for gastrointestinal diseases. Gastrointest. Endosc. Clin. N. Am. 18, 451–466 (2008).

    Article  PubMed  Google Scholar 

  88. Kiesslich, R., Goetz, M., Vieth, M., Galle, P. R. & Neurath, M. F. Confocal laser endomicroscopy. Gastrointest. Endosc. Clin. N. Am. 15, 715–731 (2005).

    Article  PubMed  Google Scholar 

  89. Kiesslich, R., Goetz, M., Vieth, M., Galle, P. R. & Neurath, M. F. Technology insight: confocal laser endoscopy for in vivo diagnosis of colorectal cancer. Nat. Clin. Pract. Oncol. 4, 480–490 (2007).

    Article  PubMed  Google Scholar 

  90. Kiesslich, R. & Neurath, M. F. Endoscopic confocal imaging. Clin. Gastroenterol. Hepatol. 3, S58–S60 (2005).

    Article  PubMed  Google Scholar 

  91. Meining, A. et al. In vivo histopathology for detection of gastrointestinal neoplasia with a portable, confocal miniprobe: an examiner blinded analysis. Clin. Gastroenterol. Hepatol. 5, 1261–1267 (2007).

    Article  PubMed  Google Scholar 

  92. Polglase, A. L. et al. A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract. Gastrointest. Endosc. 62, 686–695 (2005).

    Article  PubMed  Google Scholar 

  93. Borovicka, J. et al. Autofluorescence endoscopy in surveillance of Barrett's esophagus: a multicenter randomized trial on diagnostic efficacy. Endoscopy 38, 867–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Curvers, W. L. et al. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett's oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system. Gut 57, 167–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Curvers, W. L. et al. Identification of predictive factors for early neoplasia in Barrett's esophagus after autofluorescence imaging: a stepwise multicenter structured assessment. Gastrointest. Endosc. 70, 9–17 (2009).

    Article  PubMed  Google Scholar 

  96. Falk, G. W. Autofluorescence endoscopy. Gastrointest. Endosc. Clin. N. Am. 19, 209–220 (2009).

    Article  PubMed  Google Scholar 

  97. Kara, M. A., Peters, F. P., Fockens, P., ten Kate, F. J. & Bergman, J. J. Endoscopic video-autofluorescence imaging followed by narrow band imaging for detecting early neoplasia in Barrett's esophagus. Gastrointest. Endosc. 64, 176–185 (2006).

    Article  PubMed  Google Scholar 

  98. Kara, M. A. et al. Endoscopic video autofluorescence imaging may improve the detection of early neoplasia in patients with Barrett's esophagus. Gastrointest. Endosc. 61, 679–685 (2005).

    Article  PubMed  Google Scholar 

  99. Fennerty, M. B. Does chemoprevention of Barrett's esophagus using acid suppression and/or COX-2 inhibition prevent neoplastic progression? Rev. Gastroenterol. Disord. 2 (Suppl. 2), S30–S37 (2002).

    PubMed  Google Scholar 

  100. Fennerty, M. B. Barrett's-related esophageal cancer: has the final hurdle been cleared, now paving the way for human chemoprevention trials? Gastroenterology 122, 1172–1175 (2002).

    Article  PubMed  Google Scholar 

  101. Umansky, M. et al. Proton pump inhibitors reduce cell cycle abnormalities in Barrett's esophagus. Oncogene 20, 7987–7991 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Bateman, D. N. et al. Mortality study of 18,000 patients treated with omeprazole. Gut 52, 942–946 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Farrow, D. C. et al. Use of aspirin and other nonsteroidal anti-inflammatory drugs and risk of esophageal and gastric cancer. Cancer Epidemiol. Biomarkers Prev. 7, 97–102 (1998).

    CAS  PubMed  Google Scholar 

  104. Funkhouser, E. M. & Sharp, G. B. Aspirin and reduced risk of esophageal carcinoma. Cancer 76, 1116–1119 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Thun, M. J., Namboodiri, M. M., Calle, E. E., Flanders, W. D. & Heath, C. W. Jr. Aspirin use and risk of fatal cancer. Cancer Res. 53, 1322–1327 (1993).

    CAS  PubMed  Google Scholar 

  106. Morris, C. D., Armstrong, G. R., Bigley, G., Green, H. & Attwood, S. E. Cyclooxygenase-2 expression in the Barrett's metaplasia–dysplasia–adenocarcinoma sequence. Am. J. Gastroenterol. 96, 990–996 (2001).

    CAS  PubMed  Google Scholar 

  107. Heath, E. I. et al. Secondary chemoprevention of Barrett's esophagus with celecoxib: results of a randomized trial. J. Natl Cancer Inst. 99, 545–557 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. El-Serag, H. B. et al. Proton pump inhibitors are associated with reduced incidence of dysplasia in Barrett's esophagus. Am. J. Gastroenterol. 99, 1877–1883 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Ouatu-Lascar, R., Fitzgerald, R. C. & Triadafilopoulos, G. Differentiation and proliferation in Barrett's esophagus and the effects of acid suppression. Gastroenterology 117, 327–335 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Feagins, L. A. et al. Acid has antiproliferative effects in nonneoplastic Barrett's epithelial cells. Am. J. Gastroenterol. 102, 10–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Hillman, L. C., Chiragakis, L., Shadbolt, B., Kaye, G. L. & Clarke, A. C. Proton-pump inhibitor therapy and the development of dysplasia in patients with Barrett's oesophagus. Med. J. Aust. 180, 387–391 (2004).

    Article  PubMed  Google Scholar 

  112. Overholt, B. F. et al. Five-year efficacy and safety of photodynamic therapy with Photofrin in Barrett's high-grade dysplasia. Gastrointest. Endosc. 66, 460–468 (2007).

    Article  PubMed  Google Scholar 

  113. Prasad, G. A. et al. Predictors of stricture formation after photodynamic therapy for high-grade dysplasia in Barrett's esophagus. Gastrointest. Endosc. 65, 60–66 (2007).

    Article  PubMed  Google Scholar 

  114. Wolfsen, H. C., Hemminger, L. L., Wallace, M. B. & Devault, K. R. Clinical experience of patients undergoing photodynamic therapy for Barrett's dysplasia or cancer. Aliment. Pharmacol. Ther. 20, 1125–1131 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Prasad, G. A. et al. Significance of neoplastic involvement of margins obtained by endoscopic mucosal resection in Barrett's esophagus. Am. J. Gastroenterol. 102, 2380–2386 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Shaheen, N. J. et al. Radiofrequency ablation in Barrett's esophagus with dysplasia. N. Engl. J. Med. 360, 2277–2288 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Sharma, V. K. et al. Balloon-based, circumferential, endoscopic radiofrequency ablation of Barrett's esophagus: 1-year follow-up of 100 patients. Gastrointest. Endosc. 65, 185–195 (2007).

    Article  PubMed  Google Scholar 

  118. Fleischer, D. E. et al. Endoscopic ablation of Barrett's esophagus: a multicenter study with 2.5-year follow-up. Gastrointest. Endosc. 68, 867–876 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami J. Badreddine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badreddine, R., Wang, K. Barrett esophagus: an update. Nat Rev Gastroenterol Hepatol 7, 369–378 (2010). https://doi.org/10.1038/nrgastro.2010.78

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2010.78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing