Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of drug-induced liver injury: from bedside to bench

Abstract

The low incidence of idiosyncratic drug-induced liver injury (DILI), together with the lack of a reliable diagnostic biomarker and robust preclinical and in vitro toxicology test systems for the condition have limited our ability to define the mechanisms of DILI. A notable exception is acetaminophen hepatotoxicity, which is associated with the formation of a well-characterized and highly reactive intermediate metabolite, N-acetyl-p-benzoquinone imine. However, studies have also suggested a role for the host immune response and variation in the expression of the lymphocyte CD44 gene in the pathogenesis of acetaminophen hepatotoxicity. A careful review of the laboratory, clinical and histological phenotype of patients with DILI can provide potential clues to the mechanisms of disease pathogenesis, as observed with fialuridine and valproate hepatotoxicity. In addition, the use of transcriptomic and genomic approaches in patients with well-characterized DILI has provided important insights into the involvement of the host immune response in the pathogenesis of hepatotoxicity associated with the administration of flucloxacillin, lumiracoxib or ximelagatran. This Review highlights new developments regarding the potential role of reactive metabolites, mitochondrial toxicity, host immune-response pathways and biliary transporters in the etiopathogenesis of DILI. Going forward, a bedside-to-bench approach could improve our understanding of the mechanisms and risk factors for DILI.

Key Points

  • The biological basis for most instances of drug-induced liver injury (DILI) is unknown, but variation in host metabolic, detoxification, liver-regeneration and immune-response pathways has been implicated

  • Results of studies in animal models and humans suggest a role for variation in the expression of CD44 in acetaminophen hepatotoxicity

  • Genomic approaches have demonstrated that variation in the host immune response could help to explain susceptibility to DILI induced by treatment with ximelagatran, lumiracoxib or flucloxacillin

  • Informative animal models of DILI and in vitro test systems to predict drug hypersensitivity reactions are currently lacking

  • A bedside-to-bench approach involving the collection of biological samples from patients with well-characterized DILI could improve our understanding of the risk factors and mechanisms of DILI

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential risk factors involved in the pathogenesis of DILI.
Figure 2: Mechanism of acetaminophen hepatotoxicity.
Figure 3: Function of hepatobiliary transporters.
Figure 4: Role of the host immune response in the pathogenesis of DILI.

Similar content being viewed by others

References

  1. Ostapowicz, G. et al. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann. Intern. Med. 137, 947–954 (2002).

    Article  PubMed  Google Scholar 

  2. Sgro, C. et al. Incidence of drug-induced hepatic injuries: a French population-based study. Hepatology 36, 451–455 (2002).

    Article  PubMed  Google Scholar 

  3. Chalasani, N. et al. Causes, clinical features and outcomes from a prospective study of drug-induced liver injury in the United States. Gastroenterology 135, 1924–1934 (2008).

    Article  PubMed  Google Scholar 

  4. Temple, R. Hy's law: predicting serious hepatotoxicity. Pharmacoepidemiol. Drug Saf. 15, 241–243 (2006).

    Article  PubMed  Google Scholar 

  5. Larson, A. M. et al. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 42, 1364–1372 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Fontana, R. J. et al. Standardization of nomenclature and causality assessment in drug-induced liver injury: summary of a clinical research workshop. Hepatology 52, 730–742 (2010).

    Article  PubMed  Google Scholar 

  7. Agarwal, V. K., McHutchison, J. G. & Hoofnagle, J. H. Important elements for the diagnosis of drug-induced liver injury. Clin. Gastroenterol. Hepatol. 8, 463–470 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  8. Watkins, P. B. et al. Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily: a randomized controlled trial. JAMA 296, 87–93 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kuffner, E. K., Temple, A. R., Cooper, K. M., Baggish, J. S. & Parenti, D. L. Retrospective analysis of transient elevations in alanine aminotransferase during long-term treatment with acetaminophen in osteoarthritis clinical trials. Curr. Med. Res. Opin. 22, 2137–2148 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Nelson, S. D. Molecular mechanisms of the hepatotoxicity caused by acetaminophen. Semin. Liver Dis. 10, 267–278 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Makin, A. J., Wendon, J. & Williams, R. A 7-year experience of severe acetaminophen-induced hepatotoxicity (1987–1993). Gastroenterology 109, 1907–1916 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Zimmerman, H. J. & Maddrey, W. C. Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure. Hepatology 22, 767–773 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Slattery, J. T., Nelson, S. D. & Thummel, K. E. The complex interaction between ethanol and acetaminophen. Clin. Pharmacol. Ther. 60, 241–246 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Mitchell, J. R. et al. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J. Pharmacol. Exp. Ther. 187, 185–194 (1973).

    CAS  PubMed  Google Scholar 

  15. Jollow, D. J. et al. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J. Pharmacol. Exp. Ther. 187, 195–202 (1973).

    CAS  PubMed  Google Scholar 

  16. James, L. P. et al. Pharmacokinetics of acetaminophen-protein adducts in adults with acetaminophen overdose and acute liver failure. Drug Metab. Dispos. 37, 1779–1784 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Davern, T. J. 2nd et al. Measurement of serum acetaminophen-protein adducts in patients with acute liver failure. Gastroenterology 130, 687–694 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Harrill, A. H. et al. Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans. Genome Res. 19, 1507–1515 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kimura, K. et al. Critical role of CD44 in hepatotoxin-mediated liver injury. J. Hepatol. 48, 952–961 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Fannin, R. D. et al. Acetaminophen dosing of humans results in blood transcriptome and metabolome changes consistent with impaired oxidative phosphorylation. Hepatology 51, 227–236 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Kimura, K., Hayashi, S. & Nagaki, M. Roles of CD44 in chemical-induced liver injury. Curr. Opin. Drug Discov. Devel. 13, 96–103 (2010).

    CAS  PubMed  Google Scholar 

  22. Uetrecht, J. Idiosyncratic drug reactions: current understanding. Annu. Rev. Pharmacol. Toxicol. 47, 513–539 (2007).

    CAS  Google Scholar 

  23. Lammert, C. et al. Relationship between daily dose of oral medications and idiosyncratic drug induced liver injury: search for signals. Hepatology 47, 2003–2009 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Fourches, D. et al. Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species. Chem. Res. Toxicol. 23, 171–183 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Matthews, E. J. et al. Identification of structure-activity relationships for adverse effects of pharmaceuticals in humans: Part C: use of QSAR and an expert system for the estimation of the mechanism of action of drug-induced hepatobiliary and urinary tract toxicities. Regul. Toxicol. Pharmacol. 54, 43–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Chalasani, N., Teal, E. & Hall, S. D. Effect of rosiglitazone on serum liver biochemistries in diabetic patients with normal and elevated baseline liver enzymes. Am. J. Gastroenterol. 100, 1317–1321 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Floyd, J. S., Barbehenn, E., Lurie, P. & Wolfe, S. M. Case series of liver failure associated with rosiglitazone and pioglitazone. Pharmacoepidemiol. Drug Saf. 18, 1238–1243 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Walgren, J. L., Mitchell, M. D. & Thompson, D. C. Role of metabolism in drug-induced idiosyncratic hepatotoxicity. Crit. Rev. Toxicol. 35, 325–361 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Uetrecht, J. Immunoallergic drug-induced liver injury in humans. Semin. Liver Dis. 29, 383–392 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Bissell, D. M., Gores, G. J., Laskin, D. L. & Hoofnagle, J. H. Drug-induced liver injury: mechanisms and test systems. Hepatology 33, 1009–1013 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Bryant, A. E. 3rd & Dreifuss, F. E. Valproic acid hepatic fatalities. III. U.S. experience since 1986. Neurology 46, 465–469 (1996).

    Article  PubMed  Google Scholar 

  32. McKenzie, R. et al. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N. Engl. J. Med. 333, 1099–1105 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Kakuda, T. N. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin. Ther. 22, 685–708 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Stewart, J. D. et al. Polymerase γ gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology 52, 1791–1796 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Fromenty, B. & Pessayre, D. Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacol. Ther. 67, 101–154 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Silva, M. F. et al. Valproate inhibits the mitochondrial pyruvate-driven oxidative phosphorylation in vitro. J. Inherit. Metab. Dis. 20, 397–400 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Kaas, G. E. & Price, S. C. Role of mitochondria in drug-induced cholestatic injury. Clin. Liver Dis. 12, 27–51 (2008).

    Article  Google Scholar 

  38. Lucena, M. I. et al. Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury. Hepatology 52, 303–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Huang, Y. S. et al. Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H:quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. J. Hepatol. 47, 128–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Hamanishi, T. et al. Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular disease in Japanese type 2 diabetic patents. Diabetes 53, 2455–2460 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Li, M. K. & Crawford, J. M. The pathology of cholestasis. Semin. Liver Dis. 24, 21–42 (2004).

    Article  PubMed  Google Scholar 

  42. Valayudham, L. S. & Farrell, G. C. Drug-induced cholestasis. Expert Opin. Drug Saf. 2, 287–304 (2003).

    Article  Google Scholar 

  43. Stapelbroek, J. M., van Erpecum, K. J., Klomp, L. W. & Houwen, R. H. Liver disease associated with canalicular transport defects: current and future therapies. J. Hepatol. 52, 258–271 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Pauli-Magnus, C. & Meier, P. J. Hepatobiliary transporters and drug-induced cholestasis. Hepatology 44, 778–787 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Watkins, P. B. & Seeff, L. B. Drug-induced liver injury: summary of a single topic clinical research conference. Hepatology 43, 618–631 (2006).

    Article  PubMed  Google Scholar 

  46. Lang, C. et al. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet. Genomics 17, 47–60 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Nies, A. T. et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology 50, 1227–1240 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Degott, C. et al. Drug-induced prolonged cholestasis in adults: a histological semiquantitative study demonstrating progressive ductopenia. Hepatology 15, 244–251 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Benz, C. et al. Effect of tauroursodeoxycholic acid on bile acid-induced apoptosis in primary human hepatocytes. Eur. J. Clin. Invest. 30, 203–209 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Andrade, R. J. et al. Drug induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology 129, 512–521 (2005).

    Article  PubMed  Google Scholar 

  51. Bonkovsky, H. L. et al. Immunoallergic manifestations of drug- induced liver injury in the USA. Results from the prospective study of the DILI network [abstract]. Gastroenterology 136 (Suppl. 1), A-820 (2009).

    Google Scholar 

  52. Robin, M. A., Le Roy, M., Descatoire, V. & Pessayre, D. Plasma membrane cytochromes P450 as neoantigens and autoimmune targets in drug-induced hepatitis. J. Hepatol. 26 (Suppl. 1), 23–30 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Manns, M. P. & Obermayer-Straub, P. Cytochromes P450 and uridine triphosphate-glucuronosyltransferases: model autoantigens to study drug-induced, virus-induced, and autoimmune liver disease. Hepatology 26, 1054–1066 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Ganey, P. E., Luyendyk, J. P., Maddox, J. F. & Roth, R. A. Adverse hepatic drug reactions: inflammamatory episodes as consequence and contributor. Chem. Biol. Interact. 150, 35–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Gordin, F. M., Simon, G. L., Wofsy, C. B. & Mills, J. Adverse reactions to trimethoprim-sulfamethoxazole in patients with the acquired immunodeficiency syndrome. Ann. Intern. Med. 100, 495–499 (1984).

    Article  CAS  PubMed  Google Scholar 

  56. Watkins, P. B. Biomarkers for the diagnosis and management of drug-induced liver injury. Semin. Liver Dis. 29, 393–399 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Hautekeete, M. L. et al. HLA association of amoxicillin–clavulanate-induced hepatitis. Gastroenterology 117, 1181–1186 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. O'Donohue, J. et al. Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut 47, 717–720 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Andrade, R. J. et al. HLA class II genotype influences the types of liver injury in drug-induced idiosyncratic liver disease. Hepatology 39, 1603–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Daly, A. K. et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat. Genet. 41, 816–819 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Mallal, S. et al. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med. 358, 568–579 (2008).

    Google Scholar 

  62. Andrews, E. et al. A role for the pregnane X receptor in flucloxacillin-induced liver injury. Hepatology 51, 1656–1664 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Kindmark, A. et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests and underlying immune pathogenesis. Pharmacogenomics J. 8, 186–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Singer, J. B. et al. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat. Genet. 42, 711–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Sharp, J. R., Ishak, K. G. & Zimmerman, H. J. Chronic active hepatitis and severe hepatic necrosis associated with nitrofurantoin. Ann. Intern. Med. 92, 14–19 (1980).

    Article  CAS  PubMed  Google Scholar 

  66. Gough, A., Chapman, S., Wagstaff, K., Emery, P. & Elias, E. Minocycline-induced autoimmune hepatitis and systemic lupus erythematosus-like syndrome. BMJ 312, 169–172 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Björnsson, E. et al. Drug-induced autoimmune hepatitis: clinical characteristics and prognosis. 51, 2040–2048 (2010).

  68. Papay, J. I. et al. Drug-induced liver injury following positive drug rechallenge. Regul. Toxicol. Pharmacol. 54, 84–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Tahaoglu, K. et al. The management of anti-tuberculosis drug-induced hepatotoxicity. Int. J. Tuberc. Lung Dis. 5, 65–69 (2001).

    CAS  PubMed  Google Scholar 

  70. Hunt, C. M. Mitochondrial and immunoallergic injury increase risk of positive drug rechallenge after drug-induced liver injury: a systematic review. Hepatology 52, 2216–2222 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Pichler, W. J. & Tilch, J. The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy 59, 809–820 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Merk, H. F. Diagnosis of drug hypersensitivity: lymphocyte transformation test and cytokines. Toxicology 209, 217–220 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. Tujios and R. F. Fontana contributed equally to researching data for the article, discussing the content, writing and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Robert J. Fontana.

Ethics declarations

Competing interests

R. J. Fontana has been a Consultant for GlaxoSmithKline and Vertex Pharmaceuticals, and has been on the Speaker's bureau for Genentech and Gilead Sciences. S. Tujios declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tujios, S., Fontana, R. Mechanisms of drug-induced liver injury: from bedside to bench. Nat Rev Gastroenterol Hepatol 8, 202–211 (2011). https://doi.org/10.1038/nrgastro.2011.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2011.22

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing