Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of stroma in pancreatic cancer: diagnostic and therapeutic implications

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the five most lethal malignancies worldwide and survival has not improved substantially in the past 30 years. Desmoplasia (abundant fibrotic stroma) is a typical feature of PDAC in humans, and stromal activation commonly starts around precancerous lesions. It is becoming clear that this stromal tissue is not a bystander in disease progression. Cancer–stroma interactions effect tumorigenesis, angiogenesis, therapy resistance and possibly the metastatic spread of tumour cells. Therefore, targeting the tumour stroma, in combination with chemotherapy, is a promising new option for the treatment of PDAC. In this Review, we focus on four issues. First, how can stromal activity be used to detect early steps of pancreatic carcinogenesis? Second, what is the effect of perpetual pancreatic stellate cell activity on angiogenesis and tissue perfusion? Third, what are the (experimental) antifibrotic therapy options in PDAC? Fourth, what lessons can be learned from Langton's Ant (a simple mathematical model) regarding the unpredictability of genetically engineered mouse models?

Key Points

  • Desmoplastic stroma is a typical feature of pancreatic ductal adenocarcinoma (PDAC); it is either absent or much less prominent in other tumours of the pancreas

  • Precursor lesions of PDAC (such as pancreatic intraepithelial neoplasms and atypical flat lesions) elicit stromal activation and extracellular matrix deposition around them

  • Precursor lesions of PDAC are beneath the detection limit of conventional diagnostic methods; late diagnosis of PDAC leads to a closed therapeutic time window, thus hindering curative treatment

  • The activated stroma of pancreatic cancer has an effect on the aggressiveness of the tumour as well as its resistance to therapy

  • Activated stroma is a new diagnostic and therapeutic target in the treatment of PDAC

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunohistochemisty analysis of PanIN lesions (and known mutations).
Figure 2: Comparison of side-branch IPMN and main-duct IPMC by MRI and immunohistochemistry.
Figure 3: Imaging of a cystic pancreatic tumour using MRI.
Figure 4: Comparison of contrast dynamics of CT in PDAC and IPMN.
Figure 5: Imaging of PDAC using MRI.
Figure 6: Immunohistochemistry analysis of PDAC tissues.

Similar content being viewed by others

References

  1. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    PubMed  Google Scholar 

  2. Raimondi, S. et al. Epidemiology of pancreatic cancer: an overview. Nat. Rev. Gastroenterol. Hepatol. 6, 699–708 (2009).

    Article  PubMed  Google Scholar 

  3. Winter, J. M. et al. Survival after resection of pancreatic adenocarcinoma: results from a single institution over three decades. Ann. Surg. Oncol. 19, 169–175 (2012).

    Article  PubMed  Google Scholar 

  4. Conroy, T. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364, 1817–1825 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Conroy, T. et al. Metastatic pancreatic cancer: old drugs, new paradigms. Curr. Opin. Oncol. 23, 390–395 (2011).

    Article  PubMed  Google Scholar 

  6. Kessenbrock, K. et al. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kindler, H. L. et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J. Clin. Oncol. 28, 3617–3622 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Overall, C. M. et al. Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6, 227–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moore, M. J. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 25, 1960–1966 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Erkan, M. et al. The impact of the activated stroma on pancreatic ductal adenocarcinoma biology and therapy resistance. Curr. Mol. Med. 12, 288–303 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Erkan, M. et al. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin. Gastroenterol. Hepatol. 6, 1155–1161 (2008).

    Article  PubMed  Google Scholar 

  13. Mollenhauer, J., Roether, I. & Kern, H. F. Distribution of extracellular matrix proteints in pancreatic ductal adenocarcinoma and its influence on tumor cell proliferation in vitro. Pancreas 2, 14–24 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Apte, M. V. et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43, 128–133 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Apte, M. V. et al. Dangerous liaisons: pancreatic stellate cells and pancreatic cancer cells. J. Gastroenterol. Hepatol. 27 (Suppl. 2), 69–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Bachem, M. G. et al. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115, 421–432 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Bachem, M. G. et al. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 128, 907–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Erkan, M. et al. StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut 61, 172–178 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Erkan, M. et al. Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity. Gastroenterology 132, 1447–1464 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Erkan, M. et al. Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 11, 497–508 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hwang, R. F. et al. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res. 68, 918–926 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paron, I. et al. Tenascin-C enhances pancreatic cancer cell growth and motility and affects cell adhesion through activation of the integrin pathway. PLoS ONE 6, e21684 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vonlaufen, A. et al. Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res. 68, 2085–2093 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Omary, M. B., Lugea, A., Lowe, A. W. & Pandol, S. J. The pancreatic stellate cell: a star on the rise in pancreatic diseases. J. Clin. Invest. 117, 50–59 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Apte, M. V. & Wilson, J. S. Dangerous liaisons: pancreatic stellate cells and pancreatic cancer cells. J. Gastroenterol. Hepatol. 27 (Suppl. 2), 69–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Kelsen, D. P. et al. Pain and depression in patients with newly diagnosed pancreas cancer. J. Clin. Oncol. 13, 748–755 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Klein, A. P. et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res. 64, 2634–2638 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Giardiello, F. M. et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119, 1447–1453 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Lowenfels, A. B. et al. Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N. Engl. J. Med. 328, 1433–1437 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Canto, M. I. et al. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology 142, 796–804 (2012).

    Article  PubMed  Google Scholar 

  31. Holzapfel, K. et al. Comparison of diffusion-weighted MR imaging and multidetector-row CT in the detection of liver metastases in patients operated for pancreatic cancer. Abdom. Imaging 36, 179–184 (2011).

    Article  PubMed  Google Scholar 

  32. Aichler, M. et al. Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J. Pathol. 226, 723–734 (2011).

    Article  CAS  Google Scholar 

  33. Brune, K. et al. Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. Am. J. Surg. Pathol. 30, 1067–1076 (2006).

    PubMed  PubMed Central  Google Scholar 

  34. Pérez-Mancera, P. A. et al. What we have learned about pancreatic cancer from mouse models. Gastroenterology 142, 1079–1092 (2012).

    Article  PubMed  Google Scholar 

  35. Hernandez-Munoz, I. et al. Pancreatic ductal adenocarcinoma: cellular origin, signaling pathways and stroma contribution. Pancreatology 8, 462–469 (2008).

    Article  PubMed  Google Scholar 

  36. Pour, P. Islet cells as a component of pancreatic ductal neoplasms. I. Experimental study: ductular cells, including islet cell precursors, as primary progenitor cells of tumors. Am. J. Pathol. 90, 295–316 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kong, B. et al. AZGP1 is a tumor suppressor in pancreatic cancer inducing mesenchymal-to-epithelial transdifferentiation by inhibiting TGF-β-mediated ERK signaling. Oncogene 29, 5146–5158 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Hruban, R. H. et al. Update on pancreatic intraepithelial neoplasia. Int. J. Clin. Exp. Pathol. 1, 306–316 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Matthaei, H. et al. Cystic precursors to invasive pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 8, 141–150 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Salvia, R. et al. Main-duct intraductal papillary mucinous neoplasms of the pancreas: clinical predictors of malignancy and long-term survival following resection. Ann. Surg. 239, 678–685 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sohn, T. A. et al. Intraductal papillary mucinous neoplasms of the pancreas: an updated experience. Ann. Surg. 239, 788–797 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yamao, K. et al. The prognosis of intraductal papillary mucinous tumors of the pancreas. Hepatogastroenterology 47, 1129–1134 (2000).

    CAS  PubMed  Google Scholar 

  43. Maire, F. et al. Prognosis of malignant intraductal papillary mucinous tumours of the pancreas after surgical resection. Comparison with pancreatic ductal adenocarcinoma. Gut 51, 717–722 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stanger, B. Z. et al. Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell 8, 185–195 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Wagner, M. et al. A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease. Genes Dev. 15, 286–293 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Erkan, M. et al. Tumor microenvironment and progression of pancreatic cancer. Exp. Oncol. 32, 128–131 (2010).

    CAS  PubMed  Google Scholar 

  47. Eser, S. et al. In vivo diagnosis of murine pancreatic intraepithelial neoplasia and early-stage pancreatic cancer by molecular imaging. Proc. Natl Acad. Sci. USA 108, 9945–9950 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Guerra, C. et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11, 291–302 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Barcellos-Hoff, M. H. et al. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 1254–1260 (2000).

    CAS  PubMed  Google Scholar 

  50. Radisky, E. S. et al. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J. Mammary Gland Biol. Neoplasia 15, 201–212 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sternlicht, M. D. et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137–146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guturu, P. et al. Interplay of tumor microenvironment cell types with parenchymal cells in pancreatic cancer development and therapeutic implications. J. Gastrointest. Cancer 40, 1–9 (2009).

    Article  PubMed  Google Scholar 

  53. Masamune, A. et al. Fibrinogen induces cytokine and collagen production in pancreatic stellate cells. Gut 58, 550–559 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Pandol, S. et al. Desmoplasia of pancreatic ductal adenocarcinoma. Clin. Gastroenterol. Hepatol. 7 (11 Suppl.), S44–S47 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Radisky, D. C. et al. Matrix metalloproteinase-induced fibrosis and malignancy in breast and lung. Proc. Am. Thorac. Soc. 5, 316–322 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Erkan, M. et al. Organ-, inflammation- and cancer specific transcriptional fingerprints of pancreatic and hepatic stellate cells. Mol. Cancer 9, 88 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pilarsky, C. et al. Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling. J. Cell. Mol. Med. 12, 2823–2835 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Masamune, A. et al. Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G709–G717 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Jacobetz, M. A. et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut http://dx.doi.org/10.1136/gutjnl-2012-302529.

  60. Samkharadze, T. et al. Pigment epithelium-derived factor associates with neuropathy and fibrosis in pancreatic cancer. Am. J. Gastroenterol. 106, 968–980 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Herrmann, K. et al. Comparison of 3'-deoxy-3'-[(18)F]fluorothymidine positron emission tomography (FLT PET) and FDG PET/CT for the detection and characterization of pancreatic tumours. Eur. J. Nucl. Med. Mol. Imaging 39, 846–851 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Bausch, D. et al. Plectin-1 as a novel biomarker for pancreatic cancer. Clin. Cancer Res. 17, 302–309 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Cruz-Monserrate, Z. et al. Detection of pancreatic cancer tumours and precursor lesions by cathepsin E activity in mouse models. Gut http://dx.doi.org/10.1136/gutjnl-2011-300544.

  64. de Visser, M. et al. Novel 111In-labelled bombesin analogues for molecular imaging of prostate tumours. Eur. J. Nucl. Med. Mol. Imaging 34, 1228–1238 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Delrue, L. J. et al. Assessment of neovascular permeability in a pancreatic tumor model using dynamic contrast-enhanced (DCE) MRI with contrast agents of different molecular weights. MAGMA 24, 225–232 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Djidja, M. C. et al. MALDI-ion mobility separation-mass spectrometry imaging of glucose-regulated protein 78 kDa (Grp78) in human formalin-fixed, paraffin-embedded pancreatic adenocarcinoma tissue sections. J. Proteome Res. 8, 4876–4884 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Hilderbrand, S. A. et al. Near infrared fluorescence-based bacteriophage particles for ratiometric pH imaging. Bioconjug. Chem. 19, 1635–1639 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kelly, K. A. et al. Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma. PLoS Med. 5, e85 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim, Y. H. et al. An RNA aptamer that specifically binds pancreatic adenocarcinoma up-regulated factor inhibits migration and growth of pancreatic cancer cells. Cancer Lett. 313, 76–83 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Kimura, R. H. et al. Pharmacokinetically stabilized cystine knot peptides that bind alpha-v-beta-6 integrin with single-digit nanomolar affinities for detection of pancreatic cancer. Clin. Cancer Res. 18, 839–849 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Morse, D. L. et al. Identification of novel pancreatic adenocarcinoma cell-surface targets by gene expression profiling and tissue microarray. Biochem. Pharmacol. 80, 748–754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Partecke, I. L. et al. In vivo imaging of pancreatic tumours and liver metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model. BMC Cancer 11, 40 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rialon, K. L. et al. Aptamers: potential applications to pancreatic cancer therapy. Anticancer Agents Med. Chem. 11, 434–441 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Yang, L. et al. Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology 136, 1514–1525.e2 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Zaman, M. B. et al. Single-domain antibody bioconjugated near-IR quantum dots for targeted cellular imaging of pancreatic cancer. J. Nanosci. Nanotechnol. 11, 3757–3763 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Farace, P. et al. DCE-MRI using small-molecular and albumin-binding contrast agents in experimental carcinomas with different stromal content. Eur. J. Radiol. 78, 52–59 (2011).

    Article  PubMed  Google Scholar 

  77. Fukushima, N. et al. Periostin deposition in the stroma of invasive and intraductal neoplasms of the pancreas. Mod. Pathol. 21, 1044–1053 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Phillips, P. A. et al. Pancreatic stellate cells produce acetylcholine and may play a role in pancreatic exocrine secretion. Proc. Natl Acad. Sci. USA 107, 17397–17402 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Masamune, A. et al. NADPH oxidase plays a crucial role in the activation of pancreatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G99–G108 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, W. et al. Expression of extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in pancreatic neoplasm and pancreatic stellate cells. Cancer Biol. Ther. 6, 218–227 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Jiang, X. et al. Pancreatic islet and stellate cells are the main sources of endocrine gland-derived vascular endothelial growth factor/prokineticin-1 in pancreatic cancer. Pancreatology 9, 165–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Masamune, A. et al. Pancreatic stellate cells express Toll-like receptors. J. Gastroenterol. 43, 352–362 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xu, Z. et al. Role of pancreatic stellate cells in pancreatic cancer metastasis. Am. J. Pathol. 177, 2585–2596 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Esposito, I. et al. Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J. Clin. Pathol. 57, 630–636 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Folkman, J. Angiogenesis. Annu. Rev. Med. 57, 1–18 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Reiser-Erkan, C. et al. Hypoxia-inducible proto-oncogene Pim-1 is a prognostic marker in pancreatic ductal adenocarcinoma. Cancer Biol. Ther. 7, 1352–1359 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Michalski, C. W. et al. Mononuclear cells modulate the activity of pancreatic stellate cells which in turn promote fibrosis and inflammation in chronic pancreatitis. J. Transl. Med. 5, 63 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Michalski, C. W. et al. Cannabinoids reduce markers of inflammation and fibrosis in pancreatic stellate cells. PLoS ONE 3, e1701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Von Hoff, D. D. et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol. 29, 4548–4554 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Oparil, S. et al. The renin-angiotensin system (second of two parts). N. Engl. J. Med. 291, 446–457 (1974).

    Article  CAS  PubMed  Google Scholar 

  93. Oparil, S. et al. The renin-angiotensin system (first of two parts). N. Engl. J. Med. 291, 389–401 (1974).

    Article  CAS  PubMed  Google Scholar 

  94. Peach, M. J. Renin-angiotensin system: biochemistry and mechanisms of action. Physiol. Rev. 57, 313–370 (1977).

    Article  CAS  PubMed  Google Scholar 

  95. Paul, M. et al. Physiology of local renin-angiotensin systems. Physiol. Rev. 86, 747–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Tsang, S. W. et al. The role of the pancreatic renin-angiotensin system in acinar digestive enzyme secretion and in acute pancreatitis. Regul. Pept. 119, 213–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Tsang, S. W. et al. Prophylactic and therapeutic treatments with AT 1 and AT 2 receptor antagonists and their effects on changes in the severity of pancreatitis. Int. J. Biochem. Cell Biol. 36, 330–339 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Kuno, A. et al. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology 124, 1010–1019 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Ulmasov, B. et al. Protective role of angiotensin II type 2 receptor signaling in a mouse model of pancreatic fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G284–G294 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Sakurai, T. et al. Involvement of angiotensin II and reactive oxygen species in pancreatic fibrosis. Pancreatology 11 (Suppl. 2), 7–13 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Ulmasov, B. et al. Angiotensin II signaling through the AT1a and AT1b receptors does not have a role in the development of cerulein-induced chronic pancreatitis in the mouse. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G70–G80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ernsberger, P. et al. Metabolic actions of angiotensin receptor antagonists: PPAR-gamma agonist actions or a class effect? Curr. Opin. Pharmacol. 7, 140–145 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ling, M. T. et al. Tocotrienol as a potential anticancer agent. Carcinogenesis 33, 233–239 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Li, X. C. et al. alpha-Tocopherol treatment ameliorates chronic pancreatitis in an experimental rat model induced by trinitrobenzene sulfonic acid. Pancreatology 11, 5–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Rickmann, M. et al. Tocotrienols induce apoptosis and autophagy in rat pancreatic stellate cells through the mitochondrial death pathway. Gastroenterology 132, 2518–2532 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Jiang, F. et al. Comparison of antioxidative and antifibrotic effects of alpha-tocopherol with those of tocotrienol-rich fraction in a rat model of chronic pancreatitis. Pancreas 40, 1091–1096 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Priyadarsini, K. I. et al. Free radical studies of ellagic acid, a natural phenolic antioxidant. J. Agric. Food Chem. 50, 2200–2206 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Iino, T. et al. Effect of ellagic acid on gastric damage induced in ischemic rat stomachs following ammonia or reperfusion. Life Sci. 70, 1139–1150 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Thresiamma, K. C. et al. Inhibition of liver fibrosis by ellagic acid. Indian J. Physiol. Pharmacol. 40, 363–366 (1996).

    CAS  PubMed  Google Scholar 

  110. Masamune, A. et al. Ellagic acid blocks activation of pancreatic stellate cells. Biochem. Pharmacol. 70, 869–878 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Suzuki, N. et al. Ellagic acid inhibits pancreatic fibrosis in male Wistar Bonn/Kobori rats. Dig. Dis. Sci. 54, 802–810 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Ratnam, D. V. et al. Simultaneous analysis of ellagic acid and coenzyme Q(10) by derivative spectroscopy and HPLC. Talanta 70, 387–391 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Kitamura, M. et al. Epigallocatechin gallate suppresses peritoneal fibrosis in mice. Chem. Biol. Interact. 195, 95–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Kim, N. et al. Formation of vitamin A lipid droplets in pancreatic stellate cells requires albumin. Gut 58, 1382–1390 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Masamune, A. et al. Signal transduction in pancreatic stellate cells. J. Gastroenterol. 44, 249–260 (2009).

    Article  PubMed  Google Scholar 

  116. Kunz-Schughart, L. A. et al. A heterologous 3-D coculture model of breast tumor cells and fibroblasts to study tumor-associated fibroblast differentiation. Exp. Cell Res. 266, 74–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Mersmann, M. et al. Human antibody derivatives against the fibroblast activation protein for tumor stroma targeting of carcinomas. Int. J. Cancer 92, 240–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Cheng, J. D. et al. Promotion of tumor growth by murine fibroblast activation protein, a serine protease, in an animal model. Cancer Res. 62, 4767–4772 (2002).

    CAS  PubMed  Google Scholar 

  119. Loeffler, M. et al. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J. Clin. Invest. 116, 1955–1962 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kraman, M. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330, 827–830 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Morris, J. P. 4th, Wang, S. C. & Hebrok, M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat. Rev. Cancer 10, 683–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yauch, R. L. et al. A paracrine requirement for hedgehog signalling in cancer. Nature 455, 406–410 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Tian, H. et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc. Natl Acad. Sci. USA 106, 4254–4259 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pinzani, M. Pancreatic stellate cells: new kids become mature. Gut 55, 12–14 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Langton, C. Studying artificial life with cellular automata. Physica D: Nonlinear Phenomena 22, 120–149 (1986).

    Article  Google Scholar 

  127. Branda, C. S. et al. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung [BMBF] to M. Erkan, C. W. Michalski and J. Kleeff) within the “National Genome Research Network” (NGFN-Plus; 01GS08115).

Author information

Authors and Affiliations

Authors

Contributions

M. Erkan and C. W. Michalski contributed to all aspects of the manuscript. S. Hausmann researched data for the article and contributed to writing and reviewing/editing the manuscript. A. A. Fingerle and M. Dobritz contributed to discussion of content, writing and reviewing/editing of the manuscript. J. Kleeff and H. Friess contributed to discussion of content and reviewing/editing of the manuscript.

Corresponding author

Correspondence to Mert Erkan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erkan, M., Hausmann, S., Michalski, C. et al. The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol 9, 454–467 (2012). https://doi.org/10.1038/nrgastro.2012.115

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing