Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extrinsic primary afferent signalling in the gut

Abstract

Visceral sensory neurons activate reflex pathways that control gut function and also give rise to important sensations, such as fullness, bloating, nausea, discomfort, urgency and pain. Sensory neurons are organised into three distinct anatomical pathways to the central nervous system (vagal, thoracolumbar and lumbosacral). Although remarkable progress has been made in characterizing the roles of many ion channels, receptors and second messengers in visceral sensory neurons, the basic aim of understanding how many classes there are, and how they differ, has proven difficult to achieve. We suggest that just five structurally distinct types of sensory endings are present in the gut wall that account for essentially all of the primary afferent neurons in the three pathways. Each of these five major structural types of endings seems to show distinctive combinations of physiological responses. These types are: 'intraganglionic laminar' endings in myenteric ganglia; 'mucosal' endings located in the subepithelial layer; 'muscular–mucosal' afferents, with mechanosensitive endings close to the muscularis mucosae; 'intramuscular' endings, with endings within the smooth muscle layers; and 'vascular' afferents, with sensitive endings primarily on blood vessels. 'Silent' afferents might be a subset of inexcitable 'vascular' afferents, which can be switched on by inflammatory mediators. Extrinsic sensory neurons comprise an attractive focus for targeted therapeutic intervention in a range of gastrointestinal disorders.

Key Points

  • The gut is innervated by several classes of extrinsic sensory neurons that have distinct combinations of properties making them sensitive to particular mechanical and chemical stimuli

  • Progress has been made in identifying the morphology of sensory endings in the gut wall, possibly providing a more robust means to classify sensory innervation

  • Five different morphological types of endings can be distinguished by their structure; these account for the great majority of sensory nerves to the gastrointestinal tract and seem to correspond to distinct major physiological classes

  • The physiological properties of extrinsic afferent nerves innervating the gut are characterized by variability and by plasticity, which can make it difficult to reliably distinguish the classes of sensory neurons that underlie gut sensation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Five morphological types of extrinsic sensory neurons to the gut.

Similar content being viewed by others

References

  1. Craig, A. D. Interoception: the sense of the physiological condition of the body. Curr. Opin. Neurobiol. 13, 500–505 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Van Oudenhove, L., Coen, S.-J. & Aziz, Q. Functional brain imaging of gastrointestinal sensation in health and disease. World J. Gastroenterol. 13, 3438–3445 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jones, M. P., Dilley, J. B., Drossman, D. & Crowell, M. D. Brain–gut connections in functional GI disorders: anatomic and physiologic relationships. Neurogastroenterol. Motil. 18, 91–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Melzack, R. & Wall, P. D. Pain mechanisms: a new theory. Science 150, 971–979 (1965).

    Article  CAS  PubMed  Google Scholar 

  5. Mayer, E. A. Gut feelings: the emerging biology of gut–brain communication. Nat. Rev. Neurosci. 12, 453–466 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Raybould, H. E. Gut chemosensing: Interactions between gut endocrine cells and visceral afferents. Auton. Neurosci. 153, 41–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Rindi, G., Leiter, A. B., Kopin, A. S., Bordi, C. & Solcia, E. The “normal” endocrine cell of the gut: changing concepts and new evidences. Ann. N. Y. Acad. Sci. 1014, 1–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Collins, S. M. & Bercik, P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136, 2003–2014 (2009).

    Article  PubMed  Google Scholar 

  9. Forsythe, P., Sudo, N., Dinan, T., Taylor, V. H. & Bienenstock, J. Mood and gut feelings. Brain Behav. Immun. 24, 9–16 (2010).

    Article  PubMed  Google Scholar 

  10. Keita, A. V. & Soderholm, J. D. The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterol. Motil. 22, 718–733 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, W. et al. 'First-in-man': Characterising the mechanosensitivity of human colonic afferents. Gut 60, 281–282 (2011).

    Article  PubMed  Google Scholar 

  12. Peiris, M. et al. Human visceral afferent recordings: Preliminary report. Gut 60, 204–208 (2011).

    Article  PubMed  Google Scholar 

  13. Sirotin, B. Z. Electrophysiological study of reception from certain internal organs in man. Bull. Exp. Biol. Med. 50, 873–877 (1961).

    Article  Google Scholar 

  14. Rinaman, L., Card, J. P., Schwaber, J. S. & Miselis, R. R. Ultrastructural demonstration of a gastric monosynaptic vagal circuit in the nucleus of the solitary tract in rat. J. Neurosci. 9, 1985–1996 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Willis, A., Mihalevich, M., Neff, R. A. & Mendelowitz, D. Three types of postsynaptic glutamatergic receptors are activated in DMNX neurons upon stimulation of NTS. Am. J. Physiol. 271, R1614–R1619 (1996).

    CAS  PubMed  Google Scholar 

  16. Zhang, X. & Fogel, R. Involvement of glutamate in gastrointestinal vago-vagal reflexes initiated by gastrointestinal distention in the rat. Auton. Neurosci. 103, 19–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Dembowsky, K., Czachurski, J. & Seller, H. An intracellular study of the synaptic input to sympathetic preganglionic neurones of the third thoracic segment of the cat. J. Auton. Nerv. Syst. 13, 201–244 (1985).

    Article  CAS  PubMed  Google Scholar 

  18. Matthews, M. R. & Cuello, A. C. Substance P-immunoreactive peripheral branches of sensory neurons innervate guinea pig sympathetic neurons. Proc. Natl Acad. Sci. USA 79, 1668–1672 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Groat, W. C. & Krier, J. The sacral parasympathetic reflex pathway regulating colonic motility and defaecation in the cat. J. Physiol. Lond. 276, 481–500 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iggo, A. Tension receptors in the stomach and the urinary bladder. J. Physiol. 128, 593–607 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paintal, A. A study of gastric stretch receptors. Their role in the peripheral mechanism of satiation of hunger and thirst. J. Physiol. 126, 255–270 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brookes, S. J. H., Zagorodnyuk, V. P. & Costa, M. in Advances in vagal afferent neurobiology (eds Undem, B. J. & Weinreich, D.) 147–166 (CRC Press, FL, 2005).

    Google Scholar 

  23. Tassicker, B. C., Hennig, G. W., Costa, M. & Brookes, S. J. H. Rapid anterograde and retrograde tracing from mesenteric nerve trunks to the guinea-pig small intestine in vitro. Cell Tissue Res. 295, 437–452 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Zagorodnyuk, V. P. & Brookes, S. J. Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J. Neurosci. 20, 6249–6255 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zagorodnyuk, V. P., Chen, B. N. & Brookes, S. J. Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J. Physiol. 534, 255–268 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zagorodnyuk, V. P., Chen, B. N., Costa, M. & Brookes, S. J. Mechanotransduction by intraganglionic laminar endings of vagal tension receptors in the guinea-pig oesophagus. J. Physiol. 553, 575–587 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andrews, P. L., Grundy, D. & Scratcherd, T. Vagal afferent discharge from mechanoreceptors in different regions of the ferret stomach. J. Physiol. Lond. 298, 513–524 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berthoud, H. R., Patterson, L. M., Neumann, F. & Neuhuber, W. L. Distribution and structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat gastrointestinal tract. Anat. Embryol. (Berl.) 195, 183–191 (1997).

    Article  CAS  Google Scholar 

  29. Fox, E. A., Phillips, R. J., Martinson, F. A., Baronowsky, E. A. & Powley, T. L. Vagal afferent innervation of smooth muscle in the stomach and duodenum of the mouse: morphology and topography. J. Comp. Neurol. 428, 558–576 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Berthoud, H. R., Lynn, P. A. & Blackshaw, L. A. Vagal and spinal mechanosensors in the rat stomach and colon have multiple receptive fields. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1371–R1381 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Zhong, F., Christianson, J. A., Davis, B. M. & Bielefeldt, K. Dichotomizing axons in spinal and vagal afferents of the mouse stomach. Dig. Dis. Sci. 53, 194–203 (2008).

    Article  PubMed  Google Scholar 

  32. Neuhuber, W. L. & Clerc, N. in The Primary Afferent Neuron: A Survey of Recent Morpho-functional Aspects (eds Zenker, W. & Neuhuber, W. L.) 93–107 (Plenum, New York, 1990).

    Book  Google Scholar 

  33. Page, A. J., Martin, C. M. & Blackshaw, L. A. Vagal mechanoreceptors and chemoreceptors in mouse stomach and esophagus. J. Neurophysiol. 87, 2095–2103 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Cook, S. P. & McCleskey, E. W. Cell damage excites nociceptors through release of cytosolic ATP. Pain 95, 41–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Cockayne, D. A. et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407, 1011–1015 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Wynn, G., Rong, W., Xiang, Z. & Burnstock, G. Purinergic mechanisms contribute to mechanosensory transduction in the rat colon. Gastroenterology 125, 1398–1409 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Smid, S. D., Young, R. L., Cooper, N. J. & Blackshaw, L. A. GABA(B)R expressed on vagal afferent neurones inhibit gastric mechanosensitivity in ferret proximal stomach. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G1494–G1501 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Page, A. J. et al. Metabotropic glutamate receptors inhibit mechanosensitivity in vagal sensory neurons. Gastroenterology 128, 402–410 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Slattery, J. A., Page, A. J., Dorian, C. L., Brierley, S. M. & Blackshaw, L. A. Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors. J. Physiol. 577, 295–306 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kentish, S. et al. Diet-induced adaptation of vagal afferent function. J. Physiol. 590, 209–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Olsson, C., Costa, M. & Brookes, S. J. Neurochemical characterization of extrinsic innervation of the guinea pig rectum. J. Comp. Neurol. 470, 357–371 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Lynn, P. A., Olsson, C., Zagorodnyuk, V., Costa, M. & Brookes, S. J. Rectal intraganglionic laminar endings are transduction sites of extrinsic mechanoreceptors in the guinea pig rectum. Gastroenterology 125, 786–794 (2003).

    Article  PubMed  Google Scholar 

  43. Zagorodnyuk, V. P. et al. Loss of visceral pain following colorectal distension in an endothelin-3 deficient mouse model of hirschsprung's disease. J. Physiol. 589, 1691–1706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lynn, P., Zagorodnyuk, V., Hennig, G., Costa, M. & Brookes, S. Mechanical activation of rectal intraganglionic laminar endings in the guinea pig distal gut. J. Physiol. 564, 589–601 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Janig, W. & Koltzenburg, M. Receptive properties of sacral primary afferent neurons supplying the colon. J. Neurophysiol. 65, 1067–1077 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Sengupta, J. N. & Gebhart, G. F. Characterization of mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat. J. Neurophysiol. 71, 2046–2060 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Brierley, S. M., Jones, R. C. 3rd., Gebhart, G. F. & Blackshaw, L. A. Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology 127, 166–178 (2004).

    Article  PubMed  Google Scholar 

  48. Yamanouchi, M. et al. Integrative control of rectoanal reflex in guinea pigs through lumbar colonic nerves. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G148–G156 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Denny-Brown, D. & Robertson, E. An investigation of the nervous control of defaecation. Brain 58, 256–310 (1935).

    Article  Google Scholar 

  50. Paintal, A. S. Responses from mucosal mechanoreceptors in the small intestine of the cat. J. Physiol. 139, 353–368 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Clarke, G. D. & Davison, J. S. Mucosal receptors in the gastric antrum and small intestine of the rat with afferent fibres in the cervical vagus. J. Physiol. Lond. 284, 55–67 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leek, B. F. Abdominal and pelvic visceral receptors. Br. Med. Bull. 33, 163–168 (1977).

    Article  CAS  PubMed  Google Scholar 

  53. Powley, T. L. & Phillips, R. J. Vagal intramuscular array afferents form complexes with interstitial cells of cajal in gastrointestinal smooth muscle: analogues of muscle spindle organs? Neuroscience 186, 188–200 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Steinert, R. E. & Beglinger, C. Nutrient sensing in the gut: interactions between chemosensory cells, visceral afferents and the secretion of satiation peptides. Physiol. Behav. 105, 62–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Gershon, M. D. & Tack, J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397–414 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Gibbs, J., Young, R. C. & Smith, G. P. Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature 245, 323–325 (1973).

    Article  CAS  PubMed  Google Scholar 

  57. Hewson, G., Leighton, G. E., Hill, R. G. & Hughes, J. The cholecystokinin receptor antagonist L364,718 increases food intake in the rat by attenuation of the action of endogenous cholecystokinin. Br. J. Pharmacol. 93, 79–84 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smith, G. P., Jerome, C., Cushin, B. J., Eterno, R. & Simansky, K. J. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 213, 1036–1037 (1981).

    Article  CAS  PubMed  Google Scholar 

  59. Blackshaw, L. A. & Grundy, D. Effects of cholecystokinin (CCK-8) on two classes of gastroduodenal vagal afferent fibre. J. Auton. Nerv. Syst. 31, 191–201 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Eastwood, C., Maubach, K., Kirkup, A. J. & Grundy, D. The role of endogenous cholecystokinin in the sensory transduction of luminal nutrient signals in the rat jejunum. Neurosci. Lett. 254, 145–148 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Lal, S., Kirkup, A. J., Brunsden, A. M., Thompson, D. G. & Grundy, D. Vagal afferent responses to fatty acids of different chain length in the rat. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G907–G915 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Abbott, C. R. et al. The inhibitory effects of peripheral administration of peptide YY(3–36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 1044, 127–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Koda, S. et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 146, 2369–2375 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Batterham, R. L. et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418, 650–654 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Li, Y., Wu, X., Yao, H. & Owyang, C. Secretin activates vagal primary afferent neurons in the rat: evidence from electrophysiological and immunohistochemical studies. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G745–G752 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Kreis, M. E., Jiang, W., Kirkup, A. J. & Grundy, D. Cosensitivity of vagal mucosal afferents to histamine and 5-HT in the rat jejunum. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G612–G617 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Hillsley, K. & Grundy, D. Serotonin and cholecystokinin activate different populations of rat mesenteric vagal afferents. Neurosci. Lett. 255, 63–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Grundy, D., Blackshaw, L. A. & Hillsley, K. Role of 5-hydroxytryptamine in gastrointestinal chemosensitivity. Dig. Dis. Sci. 39, 44S–47S (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Hicks, G. A. et al. Excitation of rat colonic afferent fibres by 5-HT(3) receptors. J. Physiol. 544, 861–869 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Page, A. J. & Blackshaw, L. A. An in vitro study of the properties of vagal afferent fibres innervating the ferret oesophagus and stomach. J. Physiol. Lond. 512, 907–916 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Berthoud, H. R. & Powley, T. L. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J. Comp. Neurol. 319, 261–276 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, F. B. & Powley, T. L. Topographic inventories of vagal afferents in gastrointestinal muscle. J. Comp. Neurol. 421, 302–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Yu, S., Undem, B. J. & Kollarik, M. Vagal afferent nerves with nociceptive properties in guinea-pig oesophagus. J. Physiol. 563, 831–842 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hayakawa, T., Kuwahara-Otani, S., Maeda, S., Tanaka, K. & Seki, M. Projections of calcitonin gene-related peptide immunoreactive neurons in the vagal ganglia of the rat. J. Chem. Neuroanat. 41, 55–62 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Spencer, N. J. et al. Identification of capsaicin-sensitive rectal mechanoreceptors activated by rectal distension in mice. Neuroscience 153, 518–534 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Spencer, N. J. et al. Identification of functional intramuscular rectal mechanoreceptors in aganglionic rectal smooth muscle from piebald lethal mice. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G855–G867 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Lynn, P. A. & Brookes, S. J. H. Pudendal afferent innervation of the guinea pig external anal sphincter. Neurogastroenterol. Motil. 23, 871–e343 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Dutsch, M. et al. Vagal and spinal afferent innervation of the rat esophagus: a combined retrograde tracing and immunocytochemical study with special emphasis on calcium-binding proteins. J. Comp. Neurol. 398, 289–307 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Sang, Q. & Young, H. M. The origin and development of the vagal and spinal innervation of the external muscle of the mouse esophagus. Brain Res. 809, 253–268 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Bessou, P. & Perl, E. R. A movement receptor of the small intestine. J. Physiol. 182, 404–426 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Feng, B., Brumovsky, P. R. & Gebhart, G. F. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G402–G409 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Feng, B. et al. Long-term sensitization of mechanosensitive and -insensitive afferents in mice with persistent colorectal hypersensitivity. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G676–G683 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Blumberg, H., Haupt, P., Janig, W. & Kohler, W. Encoding of visceral noxious stimuli in the discharge patterns of visceral afferent fibres from the colon. Pflugers Arch. 398, 33–40 (1983).

    Article  CAS  PubMed  Google Scholar 

  84. Cottrell, D. F. Mechanoreceptors of the rabbit duodenum. Q. J. Exp. Physiol. 69, 677–684 (1984).

    Article  CAS  PubMed  Google Scholar 

  85. Morrison, J. F. Splanchnic slowly adapting mechanoreceptors with punctate receptive fields in the mesentery and gastrointestinal tract of the cat. J. Physiol. 233, 349–361 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Floyd, K. & Morrison, J. F. Splanchnic mechanoreceptors in the dog. Q. J. Exp. Physiol. Cogn. Med. Sci. 59, 361–366 (1974).

    CAS  PubMed  Google Scholar 

  87. Haupt, P., Janig, W. & Kohler, W. Response pattern of visceral afferent fibres, supplying the colon, upon chemical and mechanical stimuli. Pflugers Arch. 398, 41–47 (1983).

    Article  CAS  PubMed  Google Scholar 

  88. Longhurst, J. C. & Dittman, L. E. Hypoxia, bradykinin, and prostaglandins stimulate ischemically sensitive visceral afferents. Am. J. Physiol. 253, H556–H567 (1987).

    CAS  PubMed  Google Scholar 

  89. Longhurst, J. C., Kaufman, M. P., Ordway, G. A. & Musch, T. I. Effects of bradykinin and capsaicin on endings of afferent fibers from abdominal visceral organs. Am. J. Physiol. 247, R552–R559 (1984).

    CAS  PubMed  Google Scholar 

  90. Brunsden, A. M., Jacob, S., Bardhan, K. D. & Grundy, D. Mesenteric afferent nerves are sensitive to vascular perfusion in a novel preparation of rat ileum in vitro. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G656–G665 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Brunsden, A. M., Brookes, S. J., Bardhan, K. D. & Grundy, D. Mechanisms underlying mechanosensitivity of mesenteric afferent fibers to vascular flow. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G422–G428 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Malin, S. A., Christianson, J. A., Bielefeldt, K. & Davis, B. M. TPRV1 expression defines functionally distinct pelvic colon afferents. J. Neurosci. 29, 743–752 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Song, X. et al. Identification of medium/high-threshold extrinsic mechanosensitive afferent nerves to the gastrointestinal tract. Gastroenterology 137, 274–284 (2009).

    Article  PubMed  Google Scholar 

  94. Takaki, M. & Nakayama, S. Effects of capsaicin on myenteric neurons of the guinea pig ileum. Neurosci. Lett. 105, 125–130 (1989).

    Article  CAS  PubMed  Google Scholar 

  95. Takaki, M. & Nakayama, S. Electrical behavior of myenteric neurons induced by mesenteric nerve stimulation in the guinea pig ileum. Acta Med. Okayama 44, 257–261 (1990).

    CAS  PubMed  Google Scholar 

  96. Bartho, L., Holzer, P., Lembeck, F. & Szolcsanyi, J. Evidence that the contractile response of the guinea-pig ileum to capsaicin is due to release of substance P. J. Physiol. Lond. 332, 157–167 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Holzer, P. in Physiology of the Gastrointestinal Tract Vol. 1 (ed. Johnson, L. R.) 817–845 (Elsevier, Amsterdam, 2012).

    Book  Google Scholar 

  98. Bayliss, W. M. On the origin from the spinal cord of the vaso-dilator fibres of the hind-limb, and on the nature of these fibres. J. Physiol. 26, 173–209 (1901).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gibbins, I. L. et al. Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs. Neurosci. Lett. 57, 125–130 (1985).

    Article  CAS  PubMed  Google Scholar 

  100. Meehan, A. G., Hottenstein, O. D. & Kreulen, D. L. Capsaicin-sensitive nerves mediate inhibitory junction potentials and dilatation in guinea-pig mesenteric artery. J. Physiol. 443, 161–174 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Uddman, R., Edvinsson, L., Ekblad, E., Hakanson, R. & Sundler, F. Calcitonin gene-related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul. Pept. 15, 1–23 (1986).

    Article  CAS  PubMed  Google Scholar 

  102. Kawasaki, H., Takasaki, K., Saito, A. & Goto, K. Calcitonin gene-related peptide acts as a novel vasodilator neurotransmitter in mesenteric resistance vessels of the rat. Nature 335, 164–167 (1988).

    Article  CAS  PubMed  Google Scholar 

  103. Vanner, S. & Surprenant, A. Neural reflexes controlling intestinal microcirculation. Am. J. Physiol. 271, G223–G230 (1996).

    CAS  PubMed  Google Scholar 

  104. Holzer, P. Neurogenic vasodilatation and plasma leakage in the skin. Gen. Pharmacol. 30, 5–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Figini, M. et al. Substance P and bradykinin stimulate plasma extravasation in the mouse gastrointestinal tract and pancreas. Am. J. Physiol. 272, G785–G793 (1997).

    CAS  PubMed  Google Scholar 

  106. Sann, H., Dux, M., Schemann, M. & Jancso, G. Neurogenic inflammation in the gastrointestinal tract of the rat. Neurosci. Lett. 219, 147–150 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Meehan, A. G. & Kreulen, D. L. A capsaicin-sensitive inhibitory reflex from the colon to mesenteric arteries in the guinea-pig. J. Physiol. Lond. 448, 153–159 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Petersen, K. A. et al. The CGRP-antagonist, BIBN4096BS does not affect cerebral or systemic haemodynamics in healthy volunteers. Cephalalgia 25, 139–147 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Blackshaw, L. A. & Gebhart, G. F. The pharmacology of gastrointestinal nociceptive pathways. Curr. Opin. Pharmacol. 2, 642–649 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Binshtok, A. M. et al. Nociceptors are interleukin-1beta sensors. J. Neurosci. 28, 14062–14073 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Andratsch, M. et al. A key role for gp130 expressed on peripheral sensory nerves in pathological pain. J. Neurosci. 29, 13473–13483 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li, Y., Ji, A., Weihe, E. & Schafer, M. K. H. Cell-specific expression and lipopolysaccharide-induced regulation of tumor necrosis factor alpha (TNFalpha) and TNF receptors in rat dorsal root ganglion. J. Neurosci. 24, 9623–9631 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hughes, P. A. et al. Post-inflammatory colonic afferent sensitisation: different subtypes, different pathways and different time courses. Gut 58, 1333–1341 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Sengupta, J. N., Snider, A., Su, X. & Gebhart, G. F. Effects of kappa opioids in the inflamed rat colon. Pain 79, 175–185 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Gschossmann, J. M. et al. Long-term effects of transient chemically induced colitis on the visceromotor response to mechanical colorectal distension. Dig. Dis. Sci. 49, 96–101 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Brierley, S. M. et al. Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice. J. Physiol. 567, 267–281 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Robinson, D. R., McNaughton, P. A., Evans, M. L. & Hicks, G. A. Characterization of the primary spinal afferent innervation of the mouse colon using retrograde labelling. Neurogastroenterol. Motil. 16, 113–124 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Ward, S. M., Bayguinov, J., Won, K. J., Grundy, D. & Berthoud, H. R. Distribution of the vanilloid receptor (VR1) in the gastrointestinal tract. J. Comp. Neurol. 465, 121–135 (2003).

    Article  PubMed  Google Scholar 

  119. Woo, Y. C., Park, S. S., Subieta, A. R. & Brennan, T. J. Changes in tissue pH and temperature after incision indicate acidosis may contribute to postoperative pain. Anesthesiology 101, 468–475 (2004).

    Article  PubMed  Google Scholar 

  120. Cho, H. et al. The calcium-activated chloride channel anoctamin-1 acts as a heat sensor in nociceptive neurons. Nat. Neurosci. 15, 1015–1021 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Yiangou, Y. et al. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet 357, 1338–1339 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Akbar, A. et al. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 57, 923–929 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. De Schepper, H. U. et al. TRPV1 receptors on unmyelinated C-fibres mediate colitis-induced sensitization of pelvic afferent nerve fibres in rats. J. Physiol. 586, 5247–5258 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Brierley, S. M. et al. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134, 2059–2069 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Nilius, B., Vriens, J., Prenen, J., Droogmans, G. & Voets, T. TRPV4 calcium entry channel: a paradigm for gating diversity. Am. J. Physiol. Cell Physiol. 286, C195–C205 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Cenac, N. et al. Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 135, 937–946 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Steinhoff, M. et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat. Med. 6, 151–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Sipe, W. E. B. et al. Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G1288–G1298 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Cattaruzza, F. et al. Transient receptor potential ankyrin-1 has a major role in mediating visceral pain in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G81–G91 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Brierley, S. M. et al. The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137, 2084–2095 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Nilius, B., Prenen, J. & Owsianik, G. Irritating channels: The case of TRPA1. J. Physiol. 589, 1543–1549 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Miyamoto, R., Otsuguro, K.-I. & Ito, S. Time- and concentration-dependent activation of TRPA1 by hydrogen sulfide in rat drg neurons. Neurosci. Lett. 499, 137–142 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Feng, B. & Gebhart, G. F. Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G170–G180 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Olsson, C. et al. Comparison of extrinsic efferent innervation of guinea pig distal colon and rectum. J. Comp. Neurol. 496, 787–801 (2006).

    Article  PubMed  Google Scholar 

  135. Lynn, P. A., Chen, B. N., Zagorodnyuk, V. P., Costa, M. & Brookes, S. J. H. TNBS-induced inflammation modulates the function of one class of low-threshold rectal mechanoreceptors in the guinea pig. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G862–G871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Beyak, M. J. Visceral afferents—determinants and modulation of excitability. Auton. Neurosci. 153, 69–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Furness, J. B. Novel gut afferents: Intrinsic afferent neurons and intestinofugal neurons. Auton. Neurosci. 125, 81–85 (2006).

    Article  PubMed  Google Scholar 

  138. Blackshaw, L. A., Brookes, S. J., Grundy, D. & Schemann, M. Sensory transmission in the gastrointestinal tract. Neurogastroenterol. Motil. 19, 1–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Doerffler-Melly, J. & Neuhuber, W. L. Rectospinal neurons: Evidence for a direct projection from the enteric to the central nervous system in the rat. Neurosci. Lett. 92, 121–125 (1988).

    Article  CAS  PubMed  Google Scholar 

  140. Neuhuber, W. L. et al. Rectospinal neurons: cell bodies, pathways, immunocytochemistry and ultrastructure. Neuroscience 56, 367–378 (1993).

    Article  CAS  PubMed  Google Scholar 

  141. Suckow, S. K. & Caudle, R. M. Identification and immunohistochemical characterization of colospinal afferent neurons in the rat. Neuroscience 153, 803–813 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Hibberd, T. J., Zagorodnyuk, V. P., Spencer, N. J. & Brookes, S. J. H. Viscerofugal neurons recorded from guinea-pig colonic nerves after organ culture. Neurogastroenterol. Motil. 24, 1041–e548 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Hibberd, T. J., Zagorodnyuk, V. P., Spencer, N. J. & Brookes, S. J. H. Identification and mechanosensitivity of viscerofugal neurons. Neuroscience 225, 118–129 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Sharkey, K. A., Lomax, A. E., Bertrand, P. P. & Furness, J. B. Electrophysiology, shape, and chemistry of neurons that project from guinea pig colon to inferior mesenteric ganglia. Gastroenterology 115, 909–918 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Ness, T. J. & Gebhart, G. F. Visceral pain: a review of experimental studies. Pain 41, 167–234 (1990).

    Article  CAS  PubMed  Google Scholar 

  146. Kyloh, M., Nicholas, S., Zagorodnyuk, V. P., Brookes, S. J. H. & Spencer, N. J. Identification of the visceral pain pathway activated by noxious colorectal distension in mice. Front. Neurosci. 22, 11–17 (2011).

    Google Scholar 

  147. Traub, R. J. Evidence for thoracolumbar spinal cord processing of inflammatory, but not acute colonic pain. Neuroreport 11, 2113–2116 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Ray, B. S. & Neill, C. L. Abdominal visceral sensation in man. Ann. Surg. 126, 709–724 (1947).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Lembo, T. et al. Evidence for the hypersensitivity of lumbar splanchnic afferents in irritable bowel syndrome. Gastroenterology 107, 1686–1696 (1994).

    Article  CAS  PubMed  Google Scholar 

  150. Rao, S. S. C. Pathophysiology of adult fecal incontinence. Gastroenterology 126, S14–S22 (2004).

    Article  PubMed  Google Scholar 

  151. Kwan, C. L., Mikula, K., Diamant, N. E. & Davis, K. D. The relationship between rectal pain, unpleasantness, and urge to defecate in normal subjects. Pain 97, 53–63 (2002).

    Article  PubMed  Google Scholar 

  152. Powley, T. L. & Phillips, R. J. Gastric satiation is volumetric, intestinal satiation is nutritive. Physiol. Behav. 82, 69–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Feinle, C., Grundy, D. & Read, N. W. Effects of duodenal nutrients on sensory and motor responses of the human stomach to distension. Am. J. Physiol. 273, G721–G726 (1997).

    CAS  PubMed  Google Scholar 

  154. Andrews, P. L. R. & Horn, C. C. Signals for nausea and emesis: implications for models of upper gastrointestinal diseases. Auton. Neurosci. 125, 100–115 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Sanger, G. J. & Andrews, P. L. R. Treatment of nausea and vomiting: gaps in our knowledge. Auton. Neurosci. 129, 3–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Zhu, J. X., Zhu, X. Y., Owyang, C. & Li, Y. Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. J. Physiol. 530, 431–442 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Carmagnola, S., Cantu, P. & Penagini, R. Mechanoreceptors of the proximal stomach and perception of gastric distension. Am. J. Gastroenterol. 100, 1704–1710 (2005).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding author

Correspondence to Simon J. H. Brookes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brookes, S., Spencer, N., Costa, M. et al. Extrinsic primary afferent signalling in the gut. Nat Rev Gastroenterol Hepatol 10, 286–296 (2013). https://doi.org/10.1038/nrgastro.2013.29

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.29

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing