Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Serrated neoplasia—role in colorectal carcinogenesis and clinical implications

Key Points

  • Colorectal cancer (CRC) is considered a heterogeneous disease, regarding pathogenesis and clinical behaviour

  • The suggested pathogenesis of CRC from serrated polyps has led to a paradigm shift in tumour-prevention strategies

  • Common molecular alterations associated with the serrated neoplasia pathway are a mutation in the BRAF proto-oncogene and hypermethylation of CpG islands on the promoter regions of tumour suppressor genes

  • Only limited high-quality longitudinal data are available in combination with high-quality endoscopic, histopathological and molecular data, which severely restricts elucidation of this pathway

  • However, a growing body of circumstantial evidence has been accumulated, indicating that ≥15% of all CRCs arise through the serrated neoplasia pathway

Abstract

Colorectal cancer (CRC) is considered a heterogeneous disease, both regarding pathogenesis and clinical behaviour. Four decades ago, the adenoma–carcinoma pathway was presented as the main pathway towards CRC, a conclusion that was largely based on evidence from observational morphological studies. This concept was later substantiated at the genomic level. Over the past decade, evidence has been generated for alternative routes in which CRC might develop, in particular the serrated neoplasia pathway. Providing indisputable evidence for the neoplastic potential of serrated polyps has been difficult. Reasons include the absence of reliable longitudinal observations on individual serrated lesions that progress to cancer, a shortage of available animal models for serrated lesions and challenging culture conditions when generating organoids of serrated lesions for in vitro studies. However, a growing body of circumstantial evidence has been accumulated, which indicates that ≥15% of CRCs might arise through the serrated neoplasia pathway. An even larger amount of post-colonoscopy colorectal carcinomas (carcinomas occurring within the surveillance interval after a complete colonoscopy) have been suggested to originate from serrated polyps. The aim of this Review is to assess the current status of the serrated neoplasia pathway in CRC and highlight clinical implications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative endoscopic images of serrated lesion subtypes.
Figure 2: Representative histopathological images of serrated lesion subtypes.
Figure 3: A global and simplified model of the serrated neoplasia pathway.

Similar content being viewed by others

References

  1. Siegel, R., Naishadham, D. & Jemal, A. Cancer Statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).

    Article  PubMed  Google Scholar 

  2. Ferlay, J. et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur. J. Cancer 49, 1374–1403 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Winawer, S. J. et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N. Engl. J. Med. 329, 1977–1981 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Muto, T., Bussey, H. J. R. & Morson, B. The evolution of cancer of the colon and rectum. Cancer 6, 2251–2270 (1975).

    Article  Google Scholar 

  5. Arthur, J. F. Structure and significance of metaplastic nodules in the rectal mucosa. J. Clin. Pathol. 21, 735–743 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iino, H. et al. DNA microsatellite instability in hyperplastic polyps, serrated adenomas, and mixed polyps: a mild mutator pathway for colorectal cancer? J. Clin. Pathol. 52, 5–9 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O'Brien, M. J. et al. Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am. J. Surg. Pathol. 30, 1491–1501 (2006).

    Article  PubMed  Google Scholar 

  8. Colussi, D., Brandi, G., Bazzoli, F. & Ricciardiello, L. Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int. J. Mol. Sci. 14, 16365–16385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sideris, M. & Papagrigoriadis, S. Molecular biomarkers and classification models in the evaluation of the prognosis of colorectal cancer. Anticancer Res. 34, 2061–2068 (2014).

    CAS  PubMed  Google Scholar 

  10. Snover, D. C., Ahnen, D. J., Burt, R. W. & Odze, R. D. in WHO Classification of Tumours of the Digestive System Vol. 3 Ch. 8 (ed Bosman, F. T., Carneiro, F., Hruban, R. H., Theise, N. D.) 160–165 (IARC Press, 2010).

    Google Scholar 

  11. Snover, D. C. Update on the serrated pathway to colorectal carcinoma. Hum. Pathol. 42, 1–10 (2011).

    Article  PubMed  Google Scholar 

  12. Boparai, K. S. et al. A serrated colorectal cancer pathway predominates over the classic WNT pathway in patients with hyperplastic polyposis syndrome. Am. J. Pathol. 178, 2700–2707 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. East, J. E., Saunders, B. P. & Jass, J. R. Sporadic and syndromic hyperplastic polyps and serrated adenomas of the colon: classification, molecular genetics, natural history, and clinical management. Gastroenterol. Clin. North Am. 37, 25–46, v (2008).

    Article  PubMed  Google Scholar 

  14. Bettington, M. et al. The serrated pathway to colorectal carcinoma: current concepts and challenges. Histopathology 62, 367–386 (2013).

    Article  PubMed  Google Scholar 

  15. Oono, Y. et al. Progression of a sessile serrated adenoma to an early invasive cancer within 8 months. Dig. Dis. Sci. 54, 906–909 (2009).

    Article  PubMed  Google Scholar 

  16. Lash, R. H., Genta, R. M. & Schuler, C. M. Sessile serrated adenomas: prevalence of dysplasia and carcinoma in 2139 patients. J. Clin. Pathol. 63, 681–686 (2010).

    Article  PubMed  Google Scholar 

  17. Lu, F. I. et al. Longitudinal outcome study of sessile serrated adenomas of the colorectum: an increased risk for subsequent right-sided colorectal carcinoma. Am. J. Surg. Pathol. 34, 927–934 (2010).

    Article  PubMed  Google Scholar 

  18. Holme, O. et al. Long-term risk of colorectal cancer in individuals with serrated polyps. Gut http://dx.doi.org/10.1136/gutjnl-2014-307793.

  19. Lazarus, R., Junttila, O. E., Karttunen, T. J. & Mäkinen, M. J. The risk of metachronous neoplasia in patients with serrated adenoma. Am. J. Clin. Pathol. 123, 349–359 (2005).

    Article  PubMed  Google Scholar 

  20. Teriaky, A., Driman, D. K. & Chande, N. Outcomes of a 5-year follow-up of patients with sessile serrated adenomas. Scand. J. Gastroenterol. 47, 178–183 (2012).

    Article  PubMed  Google Scholar 

  21. Carragher, L. A. S. et al. V600EBraf induces gastrointestinal crypt senescence and promotes tumour progression through enhanced CpG methylation of p16INK4a. EMBO Mol. Med. 2, 458–471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bennecke, M. et al. Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer Cell 18, 135–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Leystra, A. A. et al. Mice expressing activated PI3K rapidly develop advanced colon cancer. Cancer Res. 72, 2931–2936 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rad, R. et al. A genetic progression model of BrafV600E-induced intestinal tumorigenesis reveals targets for therapeutic intervention. Cancer Cell 24, 615–629 (2013).

    Article  CAS  Google Scholar 

  25. Jass, J. R. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50, 113–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Toyota, M. et al. CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA 96, 8681–8686 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Burgess, N. G., Tutticci, N. J., Pellise, M. & Bourke, M. J. Sessile serrated adenomas/polyps with cytologic dysplasia: a triple threat for interval cancer. Gastrointest. Endosc. 80, 307–310 (2014).

    Article  PubMed  Google Scholar 

  28. Arain, M. A. et al. CIMP status of interval colon cancers: another piece to the puzzle. Am. J. Gastroenterol. 105, 1189–1195 (2010).

    Article  PubMed  Google Scholar 

  29. Le Clercq, C. M. C. & Sanduleanu, S. Interval colorectal cancers: What and why. Curr. Gastroenterol. Rep. 16, 375 (2014).

    Article  PubMed  Google Scholar 

  30. Nishihara, R. et al. Long-term colorectal-cancer incidence and mortality after lower endoscopy. N. Engl. J. Med. 369, 1095–1105 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Hazewinkel, Y. et al. Prevalence of serrated polyps and association with synchronous advanced neoplasia in screening colonoscopy. Endoscopy 46, 219–224 (2014).

    PubMed  Google Scholar 

  32. Carr, N. J., Mahajan, H., Tan, K. L., Hawkins, N. J. & Ward, R. L. Serrated and non-serrated polyps of the colorectum: their prevalence in an unselected case series and correlation of BRAF mutation analysis with the diagnosis of sessile serrated adenoma. J. Clin. Pathol. 62, 516–518 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Rex, D. K. et al. Serrated lesions of the colorectum: review and recommendations from an expert panel. Am. J. Gastroenterol. 107, 1315–1329 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fernando, W. C. et al. The CIMP phenotype in BRAF mutant serrated polyps from a prospective colonoscopy patient cohort. Gastroenterol. Res. Pract. 2014, 374926 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Leggett, B. & Whitehall, V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology 138, 2088–2100 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Rosty, C., Hewett, D. G., Brown, I. S., Leggett, B. A. & Whitehall, V. L. J. Serrated polyps of the large intestine: current understanding of diagnosis, pathogenesis, and clinical management. J. Gastroenterol. 48, 287–302 (2013).

    Article  PubMed  Google Scholar 

  37. Aust, D. E. & Baretton, G. B. Serrated polyps of the colon and rectum (hyperplastic polyps, sessile serrated adenomas, traditional serrated adenomas, and mixed polyps)-proposal for diagnostic criteria. Virchows Arch. 457, 291–297 (2010).

    Article  PubMed  Google Scholar 

  38. Vieth, M., Quirke, P., Lambert, R., von Karsa, L. & Risio, M. Annex to Quirke et al. Quality assurance in pathology in colorectal cancer screening and diagnosis: annotations of colorectal lesions. Virchows Arch. 458, 21–30 (2011).

    Article  PubMed  Google Scholar 

  39. Abdeljawad, K. et al. Sessile serrated polyp prevalence determined by a colonoscopist with a high lesion detection rate and an experienced pathologist. Gastrointest. Endosc. 81, 517–524 (2015).

    Article  PubMed  Google Scholar 

  40. Bouwens, M. W. E. et al. Endoscopic characterization of sessile serrated adenomas/polyps with and without dysplasia. Endoscopy 46, 225–235 (2014).

    Article  PubMed  Google Scholar 

  41. Wiland, H. O. et al. Morphologic and molecular characterization of traditional serrated adenomas of the distal colon and rectum. Am. J. Surg. Pathol. 38, 1290–1297 (2014).

    PubMed  Google Scholar 

  42. Jaramillo, E., Tamura, S. & Mitomi, H. Endoscopic appearance of serrated adenomas in the colon. Endoscopy 37, 254–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Tsai, J. H. et al. Traditional serrated adenoma has two pathways of neoplastic progression that are distinct from the sessile serrated pathway of colorectal carcinogenesis. Mod. Pathol. 27, 1375–1385 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Bettington, M. et al. A clinicopathological and molecular analysis of 200 traditional serrated adenomas. Mod. Pathol. 28, 414–427 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Bettington, M. et al. Critical appraisal of the diagnosis of the sessile serrated adenoma. Am. J. Surg. Pathol. 38, 158–166 (2014).

    Article  PubMed  Google Scholar 

  46. Goldman, H., Ming, S. & Hickock, D. Nature and significance of hyperplastic polyps of the human colon. Arch. Pathol. 89, 349–354 (1970).

    CAS  PubMed  Google Scholar 

  47. Cooper, H. S., Patchefsky, A. S. & Marks, G. Adenomatous and carcinomatous changes within hyperplastic colonic epithelium. Dis. Colon Rectum 22, 152–156 (1979).

    Article  CAS  PubMed  Google Scholar 

  48. Franzin, G. & Novelli, P. Adenocarcinoma occurring in a hyperplastic (metaplastic) polyp of the colon. Endoscopy 14, 28–30 (1982).

    Article  CAS  PubMed  Google Scholar 

  49. Jass, J. R. Relation between metaplastic polyp and carcinoma of the colorectum. Lancet 321, 28–30 (1983).

    Article  Google Scholar 

  50. Williams, G. T., Arthur, J. F., Bussey, H. J. & Morson, B. C. Metaplastic polyps and polyposis of the colorectum. Histopathology 4, 155–170 (1980).

    Article  CAS  PubMed  Google Scholar 

  51. Boparai, K. S. et al. Increased colorectal cancer risk during follow-up in patients with hyperplastic polyposis syndrome: a multicentre cohort study. Gut 59, 1094–1100 (2010).

    Article  PubMed  Google Scholar 

  52. Edelstein, D. L. et al. Serrated polyposis: rapid and relentless development of colorectal neoplasia. Gut 62, 404–408 (2013).

    Article  PubMed  Google Scholar 

  53. Ferrandez, A., Samowitz, W., DiSario, J. A. & Burt, R. W. Phenotypic characteristics and risk of cancer development in hyperplastic polyposis: Case series and literature review. Am. J. Gastroenterol. 99, 2012–2018 (2004).

    Article  PubMed  Google Scholar 

  54. Hyman, N. H., Anderson, P. & Blasyk, H. Hyperplastic polyposis and the risk of colorectal cancer. Dis. Colon Rectum 47, 2101–2104 (2004).

    Article  PubMed  Google Scholar 

  55. Rubio, C. A., Stemme, S., Jaramillo, E. & Lindblom, A. Hyperplastic polyposis coli syndrome and colorectal carcinoma. Endoscopy 38, 266–270 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Carvajal-Carmona, L. G. et al. Molecular classification and genetic pathways in hyperplastic polyposis syndrome. J. Pathol. 212, 378–385 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Jass, J. R. et al. Neoplastic progression occurs through mutator pathways in hyperplastic polyposis of the colorectum. Gut 47, 43–49 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pino, M. S. & Chung, D. C. The chromosomal instability pathway in colon cancer. Gastroenterology 138, 2059–2072 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, D. et al. BRAFV600E Mutation and its association with clinicopathological features of colorectal cancer: a systematic review and meta-analysis. PLoS ONE 9, e90607 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Clancy, C., Burke, J. P., Kalady, M. F. & Coffey, J. C. BRAF mutation is associated with distinct clinicopathological characteristics in colorectal cancer: a systematic review and meta-analysis. Colorectal Dis. 15, e711–e718 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Park, S.-J. et al. Frequent CpG island methylation in serrated adenomas of the colorectum. Am. J. Pathol. 162, 815–822 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kakar, S., Deng, G., Cun, L., Sahai, V. & Kim, Y. S. CpG island methylation is frequently present in tubulovillous and villous adenomas and correlates with size, site, and villous component. Hum. Pathol. 39, 30–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Kim, Y. H., Kakar, S., Cun, L., Deng, G. & Kim, Y. S. Distinct CpG island methylation profiles and BRAF mutation status in serrated and adenomatous colorectal polyps. Int. J. Cancer 123, 2587–2593 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Van Engeland, M., Derks, S., Smits, K. M., Meijer, G. A. & Herman, J. G. Colorectal cancer epigenetics: complex simplicity. J. Clin. Oncol. 29, 1382–1391 (2011).

    Article  PubMed  Google Scholar 

  65. Bird, A. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).

    Article  CAS  PubMed  Google Scholar 

  66. Müller, H. M. et al. Methylation changes in faecal DNA: A marker for colorectal cancer screening? Lancet 363, 1283–1285 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Lenhard, K. et al. Analysis of promoter methylation in stool: a novel method for the detection of colorectal cancer. Clin. Gastroenterol. Hepatol. 3, 142–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Chan, A. O. O., Issa, J. P. J., Morris, J. S., Hamilton, S. R. & Rashid, A. Concordant CpG island methylation in hyperplastic polyposis. Am. J. Pathol. 160, 529–536 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Weisenberger, D. J. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 38, 787–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Ogino, S., Kawasaki, T., Kirkner, G. J., Loda, M. & Fuchs, C. S. CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations. J. Mol. Diagn. 8, 582–588 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, S. et al. CpG island methylator phenotype in colorectal cancers: comparison of the new and classic CpG island methylator phenotype marker panels. Arch. Pathol. Lab. Med. 132, 1657–1665 (2008).

    CAS  PubMed  Google Scholar 

  72. Fang, M., Ou, J., Hutchinson, L. & Green, M. R. The BRAF oncoprotein functions through the transcriptional repressor MAFG to mediate the CpG Island Methylator phenotype. Mol. Cell 55, 904–915 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Suzuki, H. et al. IGFBP7 is a p53-responsive gene specifically silenced in colorectal cancer with CpG island methylator phenotype. Carcinogenesis 31, 342–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Kriegl, L. et al. Up and downregulation of p16Ink4a expression in BRAF-mutated polyps/adenomas indicates a senescence barrier in the serrated route to colon cancer. Mod. Pathol. 24, 1015–1022 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Farzanehfar, M. et al. Evaluation of methylation of MGMT (O6-methylguanine-DNA methyltransferase) gene promoter in sporadic colorectal cancer. DNA Cell Biol. 32, 371–377 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Kambara, T. et al. BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut 53, 1137–1144 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Samowitz, W. S. et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 65, 6063–6069 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Kolch, W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J. 351, 289–305 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rajagopalan, H. et al. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418, 934 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Burnett-Hartman, A. N. et al. Genomic aberrations occurring in subsets of serrated colorectal lesions but not conventional adenomas. Cancer Res. 73, 2863–2872 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Kim, K.-M. et al. Molecular features of colorectal hyperplastic polyps and sessile serrated adenoma/polyps from Korea. Am. J. Surg. Pathol. 35, 1274–1286 (2011).

    Article  PubMed  Google Scholar 

  83. Sandmeier, D., Benhattar, J., Martin, P. & Bouzourene, H. Serrated polyps of the large intestine: a molecular study comparing sessile serrated adenomas and hyperplastic polyps. Histopathology 55, 206–213 (2009).

    Article  PubMed  Google Scholar 

  84. Spring, K. J. et al. High prevalence of sessile serrated adenomas with BRAF mutations: a prospective study of patients undergoing colonoscopy. Gastroenterology 131, 1400–1407 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Yang, S., Farraye, F. A., Mack, C., Posnik, O. & O'Brien, M. J. BRAF and KRAS Mutations in hyperplastic polyps and serrated adenomas of the colorectum: relationship to histology and CpG island methylation status. Am. J. Surg. Pathol. 28, 1452–1459 (2004).

    Article  PubMed  Google Scholar 

  86. Konishi, K. et al. Molecular differences between sporadic serrated and conventional colorectal adenomas. Clin. Cancer Res. 10, 3082–3090 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Chan, T. L., Zhao, W., Leung, S. Y. & Yuen, S. T. BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res. 63, 4878–4881 (2003).

    CAS  PubMed  Google Scholar 

  88. Yamauchi, M. et al. Colorectal cancer: a tale of two sides or a continuum? Gut 61, 794–797 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lochhead, P. et al. Progress and opportunities in molecular pathological epidemiology of colorectal premalignant lesions. Am. J. Gastroenterol. 109, 1205–1214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yamauchi, M. et al. Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut 61, 847–854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Phipps, A. I. et al. BRAF mutation status and survival after colorectal cancer diagnosis according to patient and tumor characteristics. Cancer Epidemiol. Biomarkers Prev. 21, 1792–1798 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hassan, C. et al. Post-polypectomy colonoscopy surveillance: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 45, 842–851 (2013).

    Article  PubMed  Google Scholar 

  93. Zauber, A. A. G. et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N. Engl. J. Med. 67, 355–356 (2012).

    Google Scholar 

  94. Li, X. et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat. Med. 20, 769–777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sawhney, M. S. et al. Microsatellite Instability in Interval Colon Cancers. Gastroenterology 131, 1700–1705 (2006).

    Article  PubMed  Google Scholar 

  96. Kahi, C. J., Hewett, D. G., Norton, D. L., Eckert, G. J. & Rex, D. K. Prevalence and variable detection of proximal colon serrated polyps during screening colonoscopy. Clin. Gastroenterol. Hepatol. 9, 42–46 (2011).

    Article  PubMed  Google Scholar 

  97. De Wijkerslooth, T. R. et al. Differences in proximal serrated polyp detection among endoscopists are associated with variability in withdrawal time. Gastrointest. Endosc. 77, 617–623 (2013).

    Article  PubMed  Google Scholar 

  98. Payne, S. R. et al. Endoscopic detection of proximal serrated lesions and pathologic identification of sessile serrated adenomas/polyps vary on the basis of center. Clin. Gastroenterol. Hepatol. 12, 1119–1126 (2014).

    Article  PubMed  Google Scholar 

  99. Hazewinkel, Y. et al. Incidence of Colonic Neoplasia in Patients with Serrated Polyposis Syndrome Who Undergo Annual Endoscopic Surveillance. Gastroenterology 147, 88–95 (2014).

    Article  PubMed  Google Scholar 

  100. Stegeman, I. et al. Colorectal cancer risk factors in the detection of advanced adenoma and colorectal cancer. Cancer Epidemiol. 37, 278–283 (2013).

    Article  PubMed  Google Scholar 

  101. Qazi, T. M. et al. Epidemiology of goblet cell and microvesicular hyperplastic polyps. Am. J. Gastroenterol. 109, 1922–1932 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Haque, T. R., Bradshaw, P. T. & Crockett, S. D. Risk Factors for Serrated Polyps of the Colorectum. Dig. Dis. Sci. 59, 2874–2889 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, the discussion of content, writing, reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Evelien Dekker.

Ethics declarations

Competing interests

E.D. has received research grant support and equipment on loan from Olympus. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

IJspeert, J., Vermeulen, L., Meijer, G. et al. Serrated neoplasia—role in colorectal carcinogenesis and clinical implications. Nat Rev Gastroenterol Hepatol 12, 401–409 (2015). https://doi.org/10.1038/nrgastro.2015.73

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.73

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing