Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NAFLD and diabetes mellitus

Key Points

  • As a result of increased prevalence, NAFLD and type 2 diabetes mellitus (T2DM) are of increasing clinical relevance worldwide

  • The liver has a key role in the pathophysiology of T2DM, as this organ contributes substantially to the development of insulin resistance

  • Rates of NAFLD, NASH, liver cirrhosis and hepatocellular carcinoma in patients with T2DM are rapidly rising

  • Medications used in the treatment of T2DM are also effective in the therapy of NASH

Abstract

The liver constitutes a key organ in systemic metabolism, contributing substantially to the development of insulin resistance and type 2 diabetes mellitus (T2DM). The mechanisms underlying these processes are not entirely understood, but involve hepatic fat accumulation, alterations of energy metabolism and inflammatory signals derived from various cell types including immune cells. Lipotoxins, mitochondrial function, cytokines and adipocytokines have been proposed to play a major part in both NAFLD and T2DM. Patients with NAFLD are commonly insulin resistant. On the other hand, a large number of patients with T2DM develop NAFLD with its inflammatory complication, NASH. The high incidence of NASH in patients with T2DM leads to further complications, such as liver cirrhosis and hepatocellular carcinoma, which are increasingly recognized. Therapeutic concepts such as thiazolidinediones (glitazones) for treating T2DM also show some efficacy in the treatment of NASH. This Review will describe the multifaceted and complex interactions between the liver and T2DM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathophysiological aspects of insulin resistance in NAFLD: role of lipids and energy metabolism.
Figure 2: Inflammatory pathways affecting hepatic insulin resistance.
Figure 3: Clinical algorithms in the management of NASH and diabetes mellitus.

Similar content being viewed by others

References

  1. Ratziu, V., Goodman, Z. & Sanyal, A. Current efforts and trends in the treatment of NASH. J. Hepatol. 62, S65–75 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed, A., Wong, R. J. & Harrison, S. A. Nonalcoholic Fatty Liver Disease Review: Diagnosis, Treatment, and Outcomes. Clin. Gastroenterol. Hepatol. 13, 2062–2070 (2015).

    Article  PubMed  Google Scholar 

  3. Castera, L., Vilgrain, V. & Angulo, P. Noninvasive evaluation of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 10, 666–675 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Hyysalo, J. et al. A population-based study on the prevalence of NASH using scores validated against liver histology. J. Hepatol. 60, 839–846 (2014).

    Article  PubMed  Google Scholar 

  5. Yeh, M. M. & Brunt, E. M. Pathological features of fatty liver disease. Gastroenterology 147, 754–764 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Wree, A., Broderick, L., Canbay, A., Hoffman, H. M. & Feldstein, A. E. From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat. Rev. Gastroenterol. Hepatol. 10, 627–636 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362, 1675–1685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Marchesini, G. et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am. J. Med. 107, 450–455 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Haas, J. T., Francque, S. & Staels, B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu. Rev. Physiol. 78, 181–205 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Moschen, A. R., Kaser, S. & Tilg, H. Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends Endocrinol. Metab. 24, 537–545 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Williams, C. D. et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140, 124–131 (2011).

    Article  PubMed  Google Scholar 

  13. Loomba, R. et al. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology 56, 943–951 (2012).

    Article  PubMed  Google Scholar 

  14. Doycheva, I., Patel, N., Peterson, M. & Loomba, R. Prognostic implication of liver histology in patients with nonalcoholic fatty liver disease in diabetes. J. Diabetes Complications 27, 293–300 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kwok, R. et al. Screening diabetic patients for non-alcoholic fatty liver disease with controlled attenuation parameter and liver stiffness measurements: a prospective cohort study. Gut 65, 1359–1368 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Koehler, E. M. et al. Presence of diabetes mellitus and steatosis is associated with liver stiffness in a general population: the Rotterdam study. Hepatology 63, 138–147 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Collaboration, N. C. D. R. F. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

    Article  Google Scholar 

  18. Yki-Jarvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2, 901–910 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Anstee, Q. M., Targher, G. & Day, C. P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10, 330–344 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Lonardo, A., Ballestri, S., Marchesini, G., Angulo, P. & Loria, P. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig. Liver Dis. 47, 181–190 (2015).

    Article  PubMed  Google Scholar 

  21. Roden, M. Mechanisms of disease: hepatic steatosis in type 2 diabetes—pathogenesis and clinical relevance. Nat. Clin. Pract. Endocrinol. Metab. 2, 335–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Kotronen, A., Westerbacka, J., Bergholm, R., Pietilainen, K. H. & Yki-Jarvinen, H. Liver fat in the metabolic syndrome. J. Clin. Endocrinol. Metab. 92, 3490–3497 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Gaggini, M. et al. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 5, 1544–1560 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McPherson, S. et al. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J. Hepatol. 62, 1148–1155 (2015).

    Article  PubMed  Google Scholar 

  25. Krssak, M. et al. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes 53, 3048–3056 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Lomonaco, R. et al. Metabolic impact of nonalcoholic steatohepatitis in obese patients with type 2 diabetes. Diabetes Care 39, 632–638 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marchesini, G. et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 50, 1844–1850 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Utzschneider, K. M. et al. Insulin resistance is the best predictor of the metabolic syndrome in subjects with a first-degree relative with type 2 diabetes. Obesity (Silver Spring) 18, 1781–1787 (2010).

    Article  CAS  Google Scholar 

  29. Iozzo, P. et al. Defective liver disposal of free fatty acids in patients with impaired glucose tolerance. J. Clin. Endocrinol. Metab. 89, 3496–3502 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Nielsen, S., Guo, Z., Johnson, C. M., Hensrud, D. D. & Jensen, M. D. Splanchnic lipolysis in human obesity. J. Clin. Invest. 113, 1582–1588 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sanyal, A. J. et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120, 1183–1192 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Lomonaco, R. et al. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology 55, 1389–1397 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Fabbrini, E. et al. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 134, 424–431 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Lambert, J. E., Ramos-Roman, M. A., Browning, J. D. & Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 726–735 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Petersen, K. F. et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc. Natl. Acad. Sci. USA 104, 12587–12594 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roden, M. et al. Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Diabetes 49, 701–707 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Shulman, G. I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371, 2237–2238 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Szendroedi, J. et al. Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc. Natl. Acad. Sci. USA 111, 9597–9602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Samuel, V. T. et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 279, 32345–32353 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Kumashiro, N. et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. USA 108, 16381–16385 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Magkos, F. et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 142, 1444–1446.e2 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Unger, R. H. Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol. Metab. 14, 398–403 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Szendroedi, J. et al. Lower fasting muscle mitochondrial activity relates to hepatic steatosis in humans. Diabetes Care 37, 468–474 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Szendroedi, J. et al. Abnormal hepatic energy homeostasis in type 2 diabetes. Hepatology 50, 1079–1086 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Schmid, A. I. et al. Liver ATP synthesis is lower and relates to insulin sensitivity in patients with type 2 diabetes. Diabetes Care 34, 448–453 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmid, A. I. et al. Quantitative ATP synthesis in human liver measured by localized 31P spectroscopy using the magnetization transfer experiment. NMR Biomed. 21, 437–443 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Koliaki, C. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 21, 739–746 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Fritsch, M. et al. Time course of postprandial hepatic phosphorus metabolites in lean, obese, and type 2 diabetes patients. Am. J. Clin. Nutr. 102, 1051–1058 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Cortez-Pinto, H. et al. Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study. JAMA 282, 1659–1664 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Satapati, S. et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J. Clin. Invest. 125, 4447–4462 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Perez-Carreras, M. et al. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology 38, 999–1007 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Serviddio, G. et al. Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia-reperfusion injury. Gut 57, 957–965 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Morris, E. M., Rector, R. S., Thyfault, J. P. & Ibdah, J. A. Mitochondria and redox signaling in steatohepatitis. Antioxid. Redox Signal. 15, 485–504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Romestaing, C. et al. Mitochondrial adaptations to steatohepatitis induced by a methionine- and choline-deficient diet. Am. J. Physiol. Endocrinol. Metab. 294, E110–E119 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Titchenell, P. M., Chu, Q., Monks, B. R. & Birnbaum, M. J. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nat. Commun. 6, 7078 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Haeusler, R. A. et al. Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat. Commun. 5, 5190 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Lu, M. et al. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat. Med. 18, 388–395 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. He, S. et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem. 285, 6706–6715 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Donati, B. et al. The rs2294918 E434K variant modulates patatin-like phospholipase domain-containing 3 expression and liver damage. Hepatology 63, 787–798 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Kozlitina, J. et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 46, 352–356 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou, Y. et al. Circulating triacylglycerol signatures and insulin sensitivity in NAFLD associated with the E167K variant in TM6SF2. J. Hepatol. 62, 657–663 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Lee, H. Y. et al. Apolipoprotein CIII overexpressing mice are predisposed to diet-induced hepatic steatosis and hepatic insulin resistance. Hepatology 54, 1650–1660 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Amaro, A. et al. Dissociation between intrahepatic triglyceride content and insulin resistance in familial hypobetalipoproteinemia. Gastroenterology 139, 149–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Tilg, H. & Moschen, A. R. Inflammatory mechanisms in the regulation of insulin resistance. Mol. Med. 14, 222–231 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Johnson, A. M. & Olefsky, J. M. The origins and drivers of insulin resistance. Cell 152, 673–684 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Moller, D. E. & Kaufman, K. D. Metabolic syndrome: a clinical and molecular perspective. Annu. Rev. Med. 56, 45–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Morris, E. M., Rector, R. S., Thyfault, J. P. & Ibdah, J. A. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J. Clin Invest. 94, 1543–1549 (1994).

    Article  Google Scholar 

  71. Samuel, V. T. & Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852–871 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wieser, V., Moschen, A. R. & Tilg, H. Inflammation, cytokines and insulin resistance: a clinical perspective. Arch. Immunol. Ther. Exp. (Warsz) 61, 119–125 (2013).

    Article  CAS  Google Scholar 

  73. Tilg, H. & Diehl, A. M. Cytokines in alcoholic and nonalcoholic steatohepatitis. N. Engl. J. Med. 343, 1467–1476 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Le, K. A. et al. Subcutaneous adipose tissue macrophage infiltration is associated with hepatic and visceral fat deposition, hyperinsulinemia, and stimulation of NF-κB stress pathway. Diabetes 60, 2802–2809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science 293, 1673–1677 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med. 11, 183–190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Arkan, M. C. et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 11, 191–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Kiechl, S. et al. Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat. Med. 19, 358–363 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Kong, Y. Y. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Goto, H. et al. Primary human bone marrow adipocytes support TNF-α-induced osteoclast differentiation and function through RANKL expression. Cytokine 56, 662–668 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Lee, N. K. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456–469 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moschen, A. R. et al. Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor α expression. Gut 59, 1259–1264 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Moschen, A. R. et al. Adipose and liver expression of interleukin (IL)-1 family members in morbid obesity and effects of weight loss. Mol. Med. 17, 840–845 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cao, H. et al. Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab. 17, 768–778 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tilg, H. & Moschen, A. R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 1836–1846 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Mathis, D. Immunological goings-on in visceral adipose tissue. Cell Metab. 17, 851–859 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Okada-Iwabu, M. et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503, 493–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Angulo, P. Nonalcoholic fatty liver disease. N. Engl. J. Med. 346, 1221–1231 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, D. H. et al. Gamma-glutamyltransferase and diabetes—a 4 year follow-up study. Diabetologia 46, 359–364 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Hanley, A. J. et al. Liver markers and development of the metabolic syndrome: the insulin resistance atherosclerosis study. Diabetes 54, 3140–3147 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Goessling, W. et al. Aminotransferase levels and 20-year risk of metabolic syndrome, diabetes, and cardiovascular disease. Gastroenterology 135, 1935–1944.e1 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Fraser, A. et al. Alanine aminotransferase, γ-glutamyltransferase, and incident diabetes: the British Women's Heart and Health Study and meta-analysis. Diabetes Care 32, 741–750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fracanzani, A. L. et al. Risk of severe liver disease in nonalcoholic fatty liver disease with normal aminotransferase levels: a role for insulin resistance and diabetes. Hepatology 48, 792–798 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Armstrong, M. J., Adams, L. A., Canbay, A. & Syn, W. K. Extrahepatic complications of nonalcoholic fatty liver disease. Hepatology 59, 1174–1197 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Sung, K. C., Wild, S. H. & Byrne, C. D. Resolution of fatty liver and risk of incident diabetes. J. Clin. Endocrinol. Metab. 98, 3637–3643 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Pais, R. et al. A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J. Hepatol. 59, 550–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Ekstedt, M. et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 44, 865–873 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) & European Association for the Study of Obesity (EASO) EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64, 1388–1402 (2016).

  100. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) & European Association for the Study of Obesity (EASO) EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. Diabetologia 59, 1121–1240 (2016).

  101. Portillo-Sanchez, P. et al. High prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus and normal plasma aminotransferase levels. J. Clin. Endocrinol. Metab. 100, 2231–2238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Poonawala, A., Nair, S. P. & Thuluvath, P. J. Prevalence of obesity and diabetes in patients with cryptogenic cirrhosis: a case-control study. Hepatology 32, 689–692 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Ghouri, N., Preiss, D. & Sattar, N. Liver enzymes, nonalcoholic fatty liver disease, and incident cardiovascular disease: a narrative review and clinical perspective of prospective data. Hepatology 52, 1156–1161 (2010).

    Article  PubMed  Google Scholar 

  104. Leite, N. C., Salles, G. F., Araujo, A. L., Villela-Nogueira, C. A. & Cardoso, C. R. Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int. 29, 113–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Doycheva, I. et al. Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE. Aliment. Pharmacol. Ther. 43, 83–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Abrams, G. A., Kunde, S. S., Lazenby, A. J. & Clements, R. H. Portal fibrosis and hepatic steatosis in morbidly obese subjects: a spectrum of nonalcoholic fatty liver disease. Hepatology 40, 475–483 (2004).

    Article  PubMed  Google Scholar 

  107. Goh, G. B. et al. Clinical spectrum of non-alcoholic fatty liver disease in diabetic and non-diabetic patients. BBA Clin. 3, 141–145 (2015).

    Article  PubMed  Google Scholar 

  108. Bazick, J. et al. Clinical model for NASH and advanced fibrosis in adult patients with diabetes and NAFLD: guidelines for referral in NAFLD. Diabetes Care 38, 1347–1355 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Morling, J. R. et al. Using non-invasive biomarkers to identify hepatic fibrosis in people with type 2 diabetes mellitus: the Edinburgh type 2 diabetes study. J. Hepatol. 60, 384–391 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Angulo, P. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149, 389–397.e10 (2015).

    Article  PubMed  Google Scholar 

  111. Angulo, P., Keach, J. C., Batts, K. P. & Lindor, K. D. Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology 30, 1356–1362 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Hossain, N. et al. Independent predictors of fibrosis in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 7, 1224–1229, 1229.e1–1229.e2 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Adams, L. A. et al. Nonalcoholic fatty liver disease increases risk of death among patients with diabetes: a community-based cohort study. Am. J. Gastroenterol. 105, 1567–1573 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Targher, G. et al. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 30, 1212–1218 (2007).

    Article  PubMed  Google Scholar 

  115. Targher, G. et al. Non-alcoholic fatty liver disease is independently associated with an increased prevalence of chronic kidney disease and proliferative/laser-treated retinopathy in type 2 diabetic patients. Diabetologia 51, 444–450 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Byrne, C. D. & Targher, G. NAFLD: a multisystem disease. J. Hepatol. 62 (Suppl. 1), S47–S64 (2015).

    Article  PubMed  Google Scholar 

  117. Marengo, A., Rosso, C. & Bugianesi, E. Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu. Rev. Med. 67, 103–117 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Bugianesi, E. et al. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 123, 134–140 (2002).

    Article  PubMed  Google Scholar 

  119. Oberaigner, W. et al. Increased cancer incidence risk in type 2 diabetes mellitus: results from a cohort study in Tyrol/Austria. BMC Public Health 14, 1058 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Dyson, J. et al. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J. Hepatol. 60, 110–117 (2014).

    Article  PubMed  Google Scholar 

  121. Zheng, Z. et al. Diabetes mellitus is associated with hepatocellular carcinoma: a retrospective case-control study in hepatitis endemic area. PLoS ONE 8, e84776 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yasui, K. et al. Characteristics of patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. Clin. Gastroenterol. Hepatol. 9, 428–433 (2011).

    Article  PubMed  Google Scholar 

  123. Welzel, T. M. et al. Population-attributable fractions of risk factors for hepatocellular carcinoma in the United States. Am. J. Gastroenterol. 108, 1314–1321 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Aleksandrova, K. et al. Inflammatory and metabolic biomarkers and risk of liver and biliary tract cancer. Hepatology 60, 858–871 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Chiang, C. H. et al. The relationship of diabetes and smoking status to hepatocellular carcinoma mortality. Medicine (Baltimore) 95, e2699 (2016).

    Article  CAS  Google Scholar 

  126. Raff, E. J. et al. Diabetes mellitus predicts occurrence of cirrhosis and hepatocellular cancer in alcoholic liver and non-alcoholic fatty liver diseases. J. Clin. Transl Hepatol. 3, 9–16 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Musso, G., Cassader, M., Rosina, F. & Gambino, R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia 55, 885–904 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Phielix, E., Szendroedi, J. & Roden, M. The role of metformin and thiazolidinediones in the regulation of hepatic glucose metabolism and its clinical impact. Trends Pharmacol. Sci. 32, 607–616 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Bugianesi, E. et al. A randomized controlled trial of metformin versus vitamin E or prescriptive diet in nonalcoholic fatty liver disease. Am. J. Gastroenterol. 100, 1082–1090 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Haukeland, J. W. et al. Metformin in patients with non-alcoholic fatty liver disease: a randomized, controlled trial. Scand. J. Gastroenterol. 44, 853–860 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Shields, W. W., Thompson, K. E., Grice, G. A., Harrison, S. A. & Coyle, W. J. The effect of metformin and standard therapy versus standard therapy alone in nondiabetic patients with insulin resistance and nonalcoholic steatohepatitis (NASH): a pilot trial. Therap. Adv. Gastroenterol. 2, 157–163 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lavine, J. E. et al. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA 305, 1659–1668 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Torres, D. M. et al. Rosiglitazone versus rosiglitazone and metformin versus rosiglitazone and losartan in the treatment of nonalcoholic steatohepatitis in humans: a 12-month randomized, prospective, open- label trial. Hepatology 54, 1631–1639 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Franciosi, M. et al. Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review. PLoS ONE 8, e71583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Phielix, E. et al. Effects of pioglitazone versus glimepiride exposure on hepatocellular fat content in type 2 diabetes. Diabetes Obes. Metab. 15, 915–922 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Belfort, R. et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 355, 2297–2307 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Aithal, G. P. et al. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology 135, 1176–1184 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Cusi, K. et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann. Intern. Med. 165, 305–315 (2016).

    Article  PubMed  Google Scholar 

  139. Ratziu, V. et al. Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology 135, 100–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Ratziu, V. et al. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology 51, 445–453 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Fruci, B., Giuliano, S., Mazza, A., Malaguarnera, R. & Belfiore, A. Nonalcoholic fatty liver: a possible new target for type 2 diabetes prevention and treatment. Int. J. Mol. Sci. 14, 22933–22966 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cui, J. et al. Sitagliptin versus placebo for nonalcoholic fatty liver disease: a randomized controlled trial. J. Hepatol. 65, 369–376 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Singh, S., Khera, R., Allen, A. M., Murad, M. H. & Loomba, R. Comparative effectiveness of pharmacological interventions for nonalcoholic steatohepatitis: a systematic review and network meta-analysis. Hepatology 62, 1417–1432 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Stefan, N. et al. Inhibition of 11β-HSD1 with RO5093151 for non-alcoholic fatty liver disease: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2, 406–416 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Cariou, B. & Staels, B. GFT505 for the treatment of nonalcoholic steatohepatitis and type 2 diabetes. Expert Opin. Investig. Drugs 23, 1441–1448 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Ratziu, V. et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150, 1147–1159 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Perry, R. J., Zhang, D., Zhang, X. M., Boyer, J. L. & Shulman, G. I. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 347, 1253–1256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Caiazzo, R. et al. Roux-en-Y gastric bypass versus adjustable gastric banding to reduce nonalcoholic fatty liver disease: a 5-year controlled longitudinal study. Ann. Surg. 260, 893–898; discussion 898–899 (2014).

    Article  PubMed  Google Scholar 

  149. Lassailly, G. et al. Bariatric surgery reduces features of nonalcoholic steatohepatitis in morbidly obese patients. Gastroenterology 149, 379–388; quiz e15–e16 (2015).

    Article  PubMed  Google Scholar 

  150. Thaler, H. [Fatty liver, its causes and concomitant diseases]. Dtsch Med. Wochenschr. 87, 1049–1055 (in German) (1962).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.T. and M.R. researched data for the article. A.R.M., H.T. and M.R. contributed to discussion of content, and wrote, reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Herbert Tilg or Michael Roden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tilg, H., Moschen, A. & Roden, M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol 14, 32–42 (2017). https://doi.org/10.1038/nrgastro.2016.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2016.147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing