Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic potential of oral tolerance

Key Points

  • The immune response to an antigen depends on the route by which antigen enters the body. When antigen is introduced orally, under normal circumstances, the immune response to that antigen is one of tolerance.

  • Oral tolerance occurs by two distinct mechanisms based on the dose of antigen given. High doses of antigen lead to anergy or deletion of antigen-specific cells, whereas low doses of antigen generate regulatory cells.

  • Oral tolerance can potentially be used to treat several autoimmune and inflammatory diseases, as well as to prevent tissue-graft rejection.

  • Many factors influence the induction of oral tolerance. Important factors include the dose of antigen, the antigen itself, the age at which tolerance is induced, gender and background genetics.

  • Animal models have shown that feeding antigen prior to disease onset is an effective method to prevent disease. By contrast, feeding antigen after the onset of disease might require the addition of adjuvants to ameliorate disease.

  • Human disease is more complex than animal models, so lessons learned from animal models must be validated in humans.

Abstract

The immune system has the daunting task of distinguishing between self and non-self. The mucosal immune system, present along the respiratory, gastrointestinal and genitourinary tracts, has the additional burden of coexisting with an abundance of dietary antigens and lumenal bacterial flora. A key feature of the mucosal immune system is its ability to remain tolerant to these antigens while retaining the capacity to repel pathogens effectively. Furthermore, tolerance generated at mucosal surfaces can translate to a more generalized systemic tolerance — a characteristic of great therapeutic potential, but with many unforeseen complexities that are explored in this review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of oral tolerance.
Figure 2: The path to oral tolerance.
Figure 3: Potential mechanisms of oral tolerance.

Similar content being viewed by others

References

  1. Janeway, C. A., Jr, Travers, P., Walport, M. & Shlopov, B. V. Immunobiology. (Garland Publishing, New York, 2001).

    Google Scholar 

  2. Chase, M. W. Inhibition of experimental drug allergy by prior feeding of the sensitizing agent. Proc. Soc. Exp. Biol. Med. 61, 257–259 (1946). A landmark paper regarding the existence of oral tolerance and the fact that different routes of administration lead to distinct immune responses.

    Article  CAS  PubMed  Google Scholar 

  3. Boyaka, P. N. et al. Therapeutic manipulation of the immune system: enhancement of innate and adaptive mucosal immunity. Curr. Pharm. Des. 9, 1965–1972 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Macaubas, C., DeKruyff, R. H. & Umetsu, D. T. Respiratory tolerance in the protection against asthma. Curr. Drug Targets Inflamm. Allergy 2, 175–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Knolle, P. A. & Gerken, G. Local control of the immune response in the liver. Immunol. Rev. 174, 21–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Stein-Streilein, J. & Streilein, J. W. Anterior chamber associated immune deviation (ACAID): regulation, biological relevance, and implications for therapy. Int. Rev. Immunol. 21, 123–152 (2002).

    Article  PubMed  Google Scholar 

  7. Mowat, A. M. Anatomical basis of tolerance and immunity to intestinal antigens. Nature Rev. Immunol. 3, 331–341 (2003).

    Article  CAS  Google Scholar 

  8. Janssens, S. & Beyaert, R. Role of Toll-like receptors in pathogen recognition. Clin. Microbiol. Rev. 16, 637–646 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Inohara, N. & Nunez, G. NODs: intracellular proteins involved in inflammation and apoptosis. Nature Rev. Immunol. 3, 371–382 (2003).

    Article  CAS  Google Scholar 

  10. Report of the Task Group on Reference Man. (Eds Snyder, W. S. et al.) (Pergamon, New York, 1975).

  11. van de, W. Y. et al. Delineation of a CD1d-restricted antigen presentation pathway associated with human and mouse intestinal epithelial cells. Gastroenterology 124, 1420–1431 (2003).

    Article  CAS  Google Scholar 

  12. Allez, M., Brimnes, J., Dotan, I. & Mayer, L. Expansion of CD8+ T cells with regulatory function after interaction with intestinal epithelial cells. Gastroenterology 123, 1516–1526 (2002).

    Article  PubMed  Google Scholar 

  13. Grdic, D., Hornquist, E., Kjerrulf, M. & Lycke, N. Y. Lack of local suppression in orally tolerant CD8-deficient mice reveals a critical regulatory role of CD8+ T cells in the normal gut mucosa. J. Immunol. 160, 754–762 (1998).

    CAS  PubMed  Google Scholar 

  14. Chen, Y., Inobe, J. & Weiner, H. L. Induction of oral tolerance to myelin basic protein in CD8-depleted mice: both CD4+ and CD8+ cells mediate active suppression. J. Immunol. 155, 910–916 (1995).

    CAS  PubMed  Google Scholar 

  15. Lider, O., Santos, L. M., Lee, C. S., Higgins, P. J. & Weiner, H. L. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. II. Suppression of disease and in vitro immune responses is mediated by antigen-specific CD8+ T lymphocytes. J. Immunol. 142, 748–752 (1989).

    CAS  PubMed  Google Scholar 

  16. Barone, K. S., Jain, S. L. & Michael, J. G. Effect of in vivo depletion of CD4+ and CD8+ cells on the induction and maintenance of oral tolerance. Cell. Immunol. 163, 19–29 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Garside, P., Steel, M., Liew, F. Y. & Mowat, A. M. CD4+ but not CD8+ T cells are required for the induction of oral tolerance. Int. Immunol. 7, 501–504 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Vistica, B. P. et al. CD8 T cells are not essential for the induction of 'low-dose' oral tolerance. Clin. Immunol. Immunopathol. 78, 196–202 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Callery, M. P., Kamei, T. & Flye, M. W. The effect of portacaval shunt on delayed-hypersensitivity responses following antigen feeding. J. Surg. Res. 46, 391–394 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Fan, T. X. et al. Successful allogeneic bone marrow transplantation (BMT) by injection of bone marrow cells via portal vein: stromal cells as BMT-facilitating cells. Stem Cells 19, 144–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Jin, T. et al. A novel strategy for organ allografts using sublethal (7 Gy) irradiation followed by injection of donor bone marrow cells via portal vein. Transplantation 71, 1725–1731 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Wrenshall, L. E. et al. Modulation of immune responses after portal venous injection of antigen. Transplantation 71, 841–850 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Trop, S. et al. Liver-associated lymphocytes expressing NK1. 1 are essential for oral immune tolerance induction in a murine model. Hepatology 29, 746–755 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Santos, L. M., al Sabbagh, A., Londono, A. & Weiner, H. L. Oral tolerance to myelin basic protein induces regulatory TGF-β-secreting T cells in Peyer's patches of SJL mice. Cell. Immunol. 157, 439–447 (1994). The first demonstration that TGF-β has an important role in the induction of oral tolerance. Importantly, TGF-β is also the switch factor for the mucosal immunoglobulin soluble IgA.

    Article  CAS  PubMed  Google Scholar 

  25. Jeurissen, S. H., Sminia, T. & Kraal, G. Selective emigration of suppressor T cells from Peyer's patches. Cell. Immunol. 85, 264–269 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Ngan, J. & Kind, L. S. Suppressor T cells for IgE and IgG in Peyer's patches of mice made tolerant by the oral administration of ovalbumin. J. Immunol. 120, 861–865 (1978).

    CAS  PubMed  Google Scholar 

  27. Kunkel, D., Kirchhoff, D., Nishikawa, S., Radbruch, A. & Scheffold, A. Visualization of peptide presentation following oral application of antigen in normal and Peyer's patches-deficient mice. Eur. J. Immunol. 33, 1292–1301 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Mowat, A. M. The role of antigen recognition and suppressor cells in mice with oral tolerance to ovalbumin. Immunology 56, 253–260 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mowat, A. M., Thomas, M. J., Mackenzie, S. & Parrott, D. M. Divergent effects of bacterial lipopolysaccharide on immunity to orally administered protein and particulate antigens in mice. Immunology 58, 677–683 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Spahn, T. W. et al. Induction of oral tolerance to cellular immune responses in the absence of Peyer's patches. Eur. J. Immunol. 31, 1278–1287 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001).

    Article  CAS  Google Scholar 

  32. Viney, J. L., Mowat, A. M., O'Malley, J. M., Williamson, E. & Fanger, N. A. Expanding dendritic cells in vivo enhances the induction of oral tolerance. J. Immunol. 160, 5815–5825 (1998).

    CAS  PubMed  Google Scholar 

  33. Scheinecker, C., McHugh, R., Shevach, E. M. & Germain, R. N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196, 1079–1090 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang, F. P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spahn, T. W. et al. Mesenteric lymph nodes are critical for the induction of high-dose oral tolerance in the absence of Peyer's patches. Eur. J. Immunol. 32, 1109–1113 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Suh, E. D. et al. Splenectomy abrogates the induction of oral tolerance in experimental autoimmune uveoretinitis. Curr. Eye Res. 12, 833–839 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Takahashi, M. et al. Requirement for splenic CD4+ T cells in the immune privilege of the anterior chamber of the eye. Clin. Exp. Immunol. 116, 231–237 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Streilein, J. W. & Niederkorn, J. Y. Induction of anterior chamber-associated immune deviation requires an intact, functional spleen. J. Exp. Med. 153, 1058–1067 (1981).

    Article  CAS  PubMed  Google Scholar 

  39. Mitchison, N. A. Induction of immunological paralysis in two zones of dosage. Proc. R. Soc. Lond. B Biol. Sci. 161, 275–292 (1964).

    Article  CAS  PubMed  Google Scholar 

  40. Friedman, A. & Weiner, H. L. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc. Natl Acad. Sci. USA 91, 6688–6692 (1994). The first study to raise the issue that dose of antigen can determine the type of tolerance generated (low doses result in suppression; high doses result in anergy/deletion).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yoshida, T., Hachimura, S. & Kaminogawa, S. The oral administration of low-dose antigen induces activation followed by tolerization, while high-dose antigen induces tolerance without activation. Clin. Immunol. Immunopathol. 82, 207–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Faria, A. M. et al. Oral tolerance induced by continuous feeding: enhanced upregulation of transforming growth factor-β/interleukin-10 and suppression of experimental autoimmune encephalomyelitis. J. Autoimmun. 20, 135–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Bitar, D. M. & Whitacre, C. C. Suppression of experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. Cell. Immunol. 112, 364–370 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Whitacre, C. C., Gienapp, I. E., Orosz, C. G. & Bitar, D. M. Oral tolerance in experimental autoimmune encephalomyelitis. III. Evidence for clonal anergy. J. Immunol. 147, 2155–2163 (1991).

    CAS  PubMed  Google Scholar 

  45. Chen, Y. et al. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376, 177–180 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Marth, T., Zeitz, Z., Ludviksson, B., Strober, W. & Kelsall, B. Murine model of oral tolerance. Induction of Fas-mediated apoptosis by blockade of interleukin-12. Ann. NY Acad. Sci. 859, 290–294 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Appleman, L. J. & Boussiotis, V. A. T cell anergy and co-stimulation. Immunol. Rev. 192, 161–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, X., Izikson, L., Liu, L. & Weiner, H. L. Activation of CD25+CD4+ regulatory T cells by oral antigen administration. J. Immunol. 167, 4245–4253 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Weiner, H. L. Induction and mechanism of action of transforming growth factor-β-secreting TH3 regulatory cells. Immunol. Rev. 182, 207–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Thorstenson, K. M. & Khoruts, A. Generation of anergic and potentially immunoregulatory CD25+CD4+ T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J. Immunol. 167, 188–195 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Dubois, B. et al. Innate CD4+CD25+ regulatory T cells are required for oral tolerance and inhibition of CD8+ T cells mediating skin inflammation. Blood 102, 3295–3301 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Fukaura, H. et al. Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-β1-secreting TH3 T cells by oral administration of myelin in multiple sclerosis patients. J. Clin. Invest 98, 70–77 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Inobe, J. et al. IL-4 is a differentiation factor for transforming growth factor-β secreting TH3 cells and oral administration of IL-4 enhances oral tolerance in experimental allergic encephalomyelitis. Eur. J. Immunol. 28, 2780–2790 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Foussat, A. et al. A comparative study between T regulatory type 1 and CD4+CD25+ T cells in the control of inflammation. J. Immunol. 171, 5018–5026 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997). This study identifies a unique subset of regulatory T cells, TR1 cells, which are IL-10-secreting regulatory T cells.

    Article  CAS  PubMed  Google Scholar 

  56. Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunol. 2, 301–306 (2001).

    Article  CAS  Google Scholar 

  57. Cozzo, C., Larkin, J., III & Caton, A. J. Self-peptides drive the peripheral expansion of CD4+CD25+ regulatory T cells. J. Immunol. 171, 5678–5682 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nature Immunol. 4, 337–342 (2003).

    Article  CAS  Google Scholar 

  59. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  60. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genet. 27, 20–21 (2001). References 59 and 60 identify a novel transcription factor (FOXP3) that is associated with a major subset of regulatory T cells (CD4+CD25+).

    Article  CAS  PubMed  Google Scholar 

  61. Nakamura, K. et al. TGF-β1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J. Immunol. 172, 834–842 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Nagler-Anderson, C., Bober, L. A., Robinson, M. E., Siskind, G. W. & Thorbecke, G. J. Suppression of type II collagen-induced arthritis by intragastric administration of soluble type II collagen. Proc. Natl Acad. Sci. USA 83, 7443–7446 (1986). The first demonstration in an animal model that feeding of the immunogen before systemic exposure can abrogate disease. This is the foundation on which the human studies were developed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Higgins, P. J. & Weiner, H. L. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein and its fragments. J. Immunol. 140, 440–445 (1988).

    CAS  PubMed  Google Scholar 

  64. Becker, K. J. et al. Immunologic tolerance to myelin basic protein decreases stroke size after transient focal cerebral ischemia. Proc. Natl Acad. Sci. USA 94, 10873–10878 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harats, D., Yacov, N., Gilburd, B., Shoenfeld, Y. & George, J. Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions. J. Am. Coll. Cardiol. 40, 1333–1338 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Maron, R. et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106, 1708–1715 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Samoilova, E. B. et al. CTLA-4 is required for the induction of high dose oral tolerance. Int. Immunol. 10, 491–498 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Chen, Y. et al. Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc. Natl Acad. Sci. USA 93, 388–391 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Barone, K. S., Reilly, M. R., Flanagan, M. P. & Michael, J. G. Abrogation of oral tolerance by feeding encapsulated antigen. Cell. Immunol. 199, 65–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Untersmayr, E. et al. Antacid medication inhibits digestion of dietary proteins and causes food allergy: a fish allergy model in BALB/c mice. J. Allergy Clin. Immunol. 112, 616–623 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. al Sabbagh, A., Miller, A., Santos, L. M. & Weiner, H. L. Antigen-driven tissue-specific suppression following oral tolerance: orally administered myelin basic protein suppresses proteolipid protein-induced experimental autoimmune encephalomyelitis in the SJL mouse. Eur. J. Immunol. 24, 2104–2109 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Karpus, W. J., Kennedy, K. J., Smith, W. S. & Miller, S. D. Inhibition of relapsing experimental autoimmune encephalomyelitis in SJL mice by feeding the immunodominant PLP139–151 peptide. J. Neurosci. Res. 45, 410–423 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Jorgensen, C., Gedon, E., Jaquet, C. & Sany, J. Gastric administration of recombinant 65 kDa heat shock protein delays the severity of type II collagen induced arthritis in mice. J. Rheumatol. 25, 763–767 (1998).

    CAS  PubMed  Google Scholar 

  74. Myers, L. K. et al. Immunogenicity of recombinant type IX collagen in murine collagen-induced arthritis. Arthritis Rheum. 46, 1086–1093 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, Z. Y., Lee, C. S., Lider, O. & Weiner, H. L. Suppression of adjuvant arthritis in Lewis rats by oral administration of type II collagen. J. Immunol. 145, 2489–2493 (1990).

    CAS  PubMed  Google Scholar 

  76. Song, F. et al. Differences between two strains of myelin basic protein (MBP) TCR transgenic mice: implications for tolerance induction. J. Autoimmun. 18, 27–37 (2002).

    Article  PubMed  Google Scholar 

  77. Baggi, F. et al. Oral administration of an immunodominant T-cell epitope downregulates TH1/TH2 cytokines and prevents experimental myasthenia gravis. J. Clin. Invest 104, 1287–1295 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vrabec, T. R., Gregerson, D. S., Dua, H. S. & Donoso, L. A. Inhibition of experimental autoimmune uveoretinitis by oral administration of S-antigen and synthetic peptides. Autoimmunity 12, 175–184 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Nussenblatt, R. B. et al. Inhibition of S-antigen induced experimental autoimmune uveoretinitis by oral induction of tolerance with S-antigen. J. Immunol. 144, 1689–1695 (1990).

    CAS  PubMed  Google Scholar 

  80. Zavazava, N. et al. Oral feeding of an immunodominant MHC donor-derived synthetic class I peptide prolongs graft survival of heterotopic cardiac allografts in a high-responder rat strain combination. J. Leukoc. Biol. 67, 793–800 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. He, Y. G., Mellon, J. & Niederkorn, J. Y. The effect of oral immunization on corneal allograft survival. Transplantation 61, 920–926 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Holan, V. et al. Induction of specific transplantation immunity by oral immunization with allogeneic cells. Immunology 101, 404–411 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ilan, Y. et al. Induction of oral tolerance in splenocyte recipients toward pretransplant antigens ameliorates chronic graft versus host disease in a murine model. Blood 95, 3613–3619 (2000).

    CAS  PubMed  Google Scholar 

  84. Ishido, N., Matsuoka, J., Matsuno, T., Nakagawa, K. & Tanaka, N. Induction of donor-specific hyporesponsiveness and prolongation of cardiac allograft survival by jejunal administration of donor splenocytes. Transplantation 68, 1377–1382 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Nagler, A. et al. Oral tolerization ameliorates liver disorders associated with chronic graft versus host disease in mice. Hepatology 31, 641–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Niederkorn, J. Y. & Mayhew, E. Phenotypic analysis of oral tolerance to alloantigens: evidence that the indirect pathway of antigen presentation is involved. Transplantation 73, 1493–1500 (2002).

    Article  PubMed  Google Scholar 

  87. Gorczynski, R. M., Chen, Z., Zeng, H. & Fu, X. M. A role for persisting antigen, antigen presentation, and ICAM-1 in increased renal graft survival after oral or portal vein donor-specific immunization. Transplantation 66, 339–349 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Ma, D., Mellon, J. & Niederkorn, J. Y. Oral immunisation as a strategy for enhancing corneal allograft survival. Br. J. Ophthalmol. 81, 778–784 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Suto, A. et al. CD4+CD25+ T-cell development is regulated by at least 2 distinct mechanisms. Blood 99, 555–560 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Homann, D., Dyrberg, T., Petersen, J., Oldstone, M. B. & Von Herrath, M. G. Insulin in oral immune 'tolerance': a one-amino acid change in the B chain makes the difference. J. Immunol. 163, 1833–1838 (1999).

    CAS  PubMed  Google Scholar 

  91. Stepkowski, S. M. et al. Allochimeric class I MHC protein-induced tolerance by partial TCR engagement requires activation of both CTL4- and common γ-chain-dependent cytokine signals. Transplantation 73, 1227–1235 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Stepkowski, S. M., Yu, J., Wang, M. & Kahan, B. D. Induction of tolerance by oral administration of a tolerogenic allochimeric donor/recipient class I MHC protein. Transplant. Proc. 31, 1557 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Aharoni, R., Teitelbaum, D., Arnon, R. & Sela, M. Copolymer 1 acts against the immunodominant epitope 82-100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc. Natl Acad. Sci. USA 96, 634–639 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maron, R., Slavin, A. J., Hoffmann, E., Komagata, Y. & Weiner, H. L. Oral tolerance to copolymer 1 in myelin basic protein (MBP) TCR transgenic mice: crossreactivity with MBP-specific TCR and differential induction of anti-inflammatory cytokines. Int. Immunol. 14, 131–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Teitelbaum, D., Arnon, R. & Sela, M. Immunomodulation of experimental autoimmune encephalomyelitis by oral administration of copolymer 1. Proc. Natl Acad. Sci. USA 96, 3842–3847 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lim, D. G., Slavik, J. M., Bourcier, K., Smith, K. J. & Hafler, D. A. Allelic variation of MHC structure alters peptide ligands to induce atypical partial agonistic CD8+ T cell function. J. Exp. Med. 198, 99–109 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Phipps, P. A. et al. Prevention of mucosally induced uveitis with a HSP60-derived peptide linked to cholera toxin B subunit. Eur. J. Immunol. 33, 224–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Bergerot, I. et al. A cholera toxoid–insulin conjugate as an oral vaccine against spontaneous autoimmune diabetes. Proc. Natl Acad. Sci. USA 94, 4610–4614 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ploix, C. et al. Oral administration of cholera toxin B–insulin conjugates protects NOD mice from autoimmune diabetes by inducing CD4+ regulatory T-cells. Diabetes 48, 2150–2156 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Bregenholt, S. et al. The cholera toxin B subunit is a mucosal adjuvant for oral tolerance induction in type 1 diabetes. Scand. J. Immunol. 57, 432–438 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Petersen, J. S. et al. Coupling of oral human or porcine insulin to the B subunit of cholera toxin (CTB) overcomes critical antigenic differences for prevention of type I diabetes. Clin. Exp. Immunol. 134, 38–45 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rizzo, L. V. et al. IL-4 and IL-10 are both required for the induction of oral tolerance. J. Immunol. 162, 2613–2622 (1999).

    CAS  PubMed  Google Scholar 

  103. Mowat, A. M., Steel, M., Leishman, A. J. & Garside, P. Normal induction of oral tolerance in the absence of a functional IL-12-dependent IFN-γ signaling pathway. J. Immunol. 163, 4728–4736 (1999).

    CAS  PubMed  Google Scholar 

  104. Zemann, B. et al. Oral administration of specific antigens to allergy-prone infant dogs induces IL-10 and TGF-β expression and prevents allergy in adult life. J. Allergy Clin. Immunol. 111, 1069–1075 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Sato, M. N. et al. Oral tolerance induction in dermatophagoides pteronyssinus-sensitized mice induces inhibition of IgE response and upregulation of TGF-β secretion. J. Interferon Cytokine Res. 21, 827–833 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Lundin, B. S. et al. Active suppression in orally tolerized rats coincides with in situ transforming growth factor-β (TGF-β) expression in the draining lymph nodes. Clin. Exp. Immunol. 116, 181–187 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hafler, D. A. et al. Oral administration of myelin induces antigen-specific TGF-β1 secreting T cells in patients with multiple sclerosis. Ann. NY Acad. Sci. 835, 120–131 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Haneda, K. et al. TGF-β induced by oral tolerance ameliorates experimental tracheal eosinophilia. J. Immunol. 159, 4484–4490 (1997).

    CAS  PubMed  Google Scholar 

  109. Strober, W. et al. Reciprocal IFN-γ and TGF-β responses regulate the occurrence of mucosal inflammation. Immunol. Today 18, 61–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Ma, C. G. et al. Mucosal tolerance to experimental autoimmune myasthenia gravis is associated with downregulation of AChR-specific IFN-γ-expressing TH1-like cells and upregulation of TGF-β mRNA in mononuclear cells. Ann. NY Acad. Sci. 778, 273–287 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Neurath, M. F. et al. Experimental granulomatous colitis in mice is abrogated by induction of TGF-β-mediated oral tolerance. J. Exp. Med. 183, 2605–2616 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Miller, A., al Sabbagh, A., Santos, L. M., Das, M. P. & Weiner, H. L. Epitopes of myelin basic protein that trigger TGF-β release after oral tolerization are distinct from encephalitogenic epitopes and mediate epitope-driven bystander suppression. J. Immunol. 151, 7307–7315 (1993). A study on bystander suppression in an oral tolerance model. This paper laid the foundation for the concept that the actual definition of the inciting agent/autoantigen in a patient was not important, as regulatory T cells activated in the area of pathology could suppress inflammation/autoreactivity.

    CAS  PubMed  Google Scholar 

  113. Barone, K. S., Tolarova, D. D., Ormsby, I., Doetschman, T. & Michael, J. G. Induction of oral tolerance in TGF-β1 null mice. J. Immunol. 161, 154–160 (1998).

    CAS  PubMed  Google Scholar 

  114. Cobelens, P. M. et al. The β2-adrenergic agonist salbutamol potentiates oral induction of tolerance, suppressing adjuvant arthritis and antigen-specific immunity. J. Immunol. 169, 5028–5035 (2002).

    Article  PubMed  Google Scholar 

  115. Strobel, S. & Ferguson, A. Immune responses to fed protein antigens in mice. III. Systemic tolerance or priming is related to age at which antigen is first encountered. Pediatr. Res. 18, 588–594 (1984).

    Article  CAS  PubMed  Google Scholar 

  116. Strobel, S. & Ferguson, A. Modulation of intestinal and systemic immune responses to a fed protein antigen, in mice. Gut 27, 829–837 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Louis, E. et al. Decrease in systemic tolerance to fed ovalbumin in indomethacin-treated mice. Int. Arch. Allergy Immunol. 109, 21–26 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. Gutgemann, I., Darling, J. M., Greenberg, H. B., Davis, M. M. & Chien, Y. H. A blood-borne antigen induces rapid T–B cell contact: a potential mechanism for tolerance induction. Immunology 107, 420–425 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gutgemann, I., Fahrer, A. M., Altman, J. D., Davis, M. M. & Chien, Y. H. Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity 8, 667–673 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Liblau, R., Tisch, R., Bercovici, N. & McDevitt, H. O. Systemic antigen in the treatment of T-cell-mediated autoimmune diseases. Immunol. Today 18, 599–604 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Maron, R., Guerau-de-Arellano, M., Zhang, X. & Weiner, H. L. Oral administration of insulin to neonates suppresses spontaneous and cyclophosphamide induced diabetes in the NOD mouse. J. Autoimmun. 16, 21–28 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Miller, A., Lider, O., Abramsky, O. & Weiner, H. L. Orally administered myelin basic protein in neonates primes for immune responses and enhances experimental autoimmune encephalomyelitis in adult animals. Eur. J. Immunol. 24, 1026–1032 (1994).

    Article  CAS  PubMed  Google Scholar 

  123. Melo, M. E., Stevens, D. B., Sercarz, E. E. & Gabaglia, C. R. Nasal instillation of gpMBP can exacerbate murine EAE: effect of mucosal priming is an age-dependent phenomenon. J. Autoimmun. 22, 13–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Russo, M. et al. Suppression of asthma-like responses in different mouse strains by oral tolerance. Am. J. Respir. Cell Mol. Biol. 24, 518–526 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Bebo, B. F., Jr. et al. Gender differences in protection from EAE induced by oral tolerance with a peptide analogue of MBP-Ac1–11. J. Neurosci. Res. 55, 432–440 (1999).

    Article  PubMed  Google Scholar 

  126. Metzler, B. & Wraith, D. C. Mucosal tolerance in a murine model of experimental autoimmune encephalomyelitis. Ann. NY Acad. Sci. 778, 228–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Husby, S., Mestecky, J., Moldoveanu, Z., Holland, S. & Elson, C. O. Oral tolerance in humans. T cell but not B cell tolerance after antigen feeding. J. Immunol. 152, 4663–4670 (1994). The first study to show that oral tolerance exists in humans. Tolerance was shown in T cells but not B cells, a finding that distinguishes tolerance in humans from that seen in mice.

    CAS  PubMed  Google Scholar 

  128. Kraus, T. A., Toy, L., Chan, L., Childs, J. & Mayer, L. Failure to induce oral tolerance to a soluble protein in patients with inflammatory bowel disease. Gastroenterology (in the press).

  129. Eigenmann, P. A. Future therapeutic options in food allergy. Allergy 58, 1217–1223 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Patriarca, G. et al. Oral desensitizing treatment in food allergy: clinical and immunological results. Aliment. Pharmacol. Ther. 17, 459–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Thurau, S. R., Diedrichs-Mohring, M., Fricke, H., Burchardi, C. & Wildner, G. Oral tolerance with an HLA-peptide mimicking retinal autoantigen as a treatment of autoimmune uveitis. Immunol. Lett. 68, 205–212 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Thurau, S. R., Diedrichs-Mohring, M., Fricke, H., Arbogast, S. & Wildner, G. Molecular mimicry as a therapeutic approach for an autoimmune disease: oral treatment of uveitis-patients with an MHC-peptide crossreactive with autoantigen — first results. Immunol. Lett. 57, 193–201 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Nussenblatt, R. B. et al. Treatment of uveitis by oral administration of retinal antigens: results of a phase I/II randomized masked trial. Am. J. Ophthalmol. 123, 583–592 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Thompson, D. J., Barron, K. S., Whitcup, S. M. & Robinson, M. R. The safety and efficacy of chicken type II collagen on uveitis associated with juvenile rheumatoid arthritis. Ocul. Immunol. Inflamm. 10, 83–91 (2002).

    Article  PubMed  Google Scholar 

  135. McKown, K. M. et al. Induction of immune tolerance to human type I collagen in patients with systemic sclerosis by oral administration of bovine type I collagen. Arthritis Rheum. 43, 1054–1061 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Barnett, M. L. et al. Treatment of rheumatoid arthritis with oral type II collagen. Results of a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 41, 290–297 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Choy, E. H. et al. Control of rheumatoid arthritis by oral tolerance. Arthritis Rheum. 44, 1993–1997 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Ausar, S. F. et al. Treatment of rheumatoid arthritis by oral administration of bovine tracheal type II collagen. Rheumatol. Int. 20, 138–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Trentham, D. E. et al. Effects of oral administration of type II collagen on rheumatoid arthritis. Science 261, 1727–1730 (1993).

    Article  CAS  PubMed  Google Scholar 

  140. Chaillous, L. et al. Oral insulin administration and residual β-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Diabete Insuline Orale group. Lancet 356, 545–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Weiner, H. L. et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 259, 1321–1324 (1993).

    Article  CAS  PubMed  Google Scholar 

  142. Wolinsky, J. S., Narayana, P. A. & Johnson, K. P. United States open-label glatiramer acetate extension trial for relapsing multiple sclerosis: MRI and clinical correlates. Multiple Sclerosis Study Group and the MRI Analysis Center. Mult. Scler. 7, 33–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Blanas, E., Carbone, F. R., Allison, J., Miller, J. F. & Heath, W. R. Induction of autoimmune diabetes by oral administration of autoantigen. Science 274, 1707–1709 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd Mayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

EntrezGene

CD28

CD80

CD86

CD95

CTLA4

FOXP3

IL-2

IL-10

IL-12

TGF-β

Zap70

FURTHER INFORMATION

National Institutes of Health News

Lloyd Mayer's homepage

Glossary

CONTACT-SENSITIZING AGENT

A substance that results in a local inflammatory response to that substance following repeated cutaneous or subcutaneous exposure.

ORAL TOLERANCE

Active non-response to an antigen administered through the oral route.

COMMENSAL BACTERIA

Any one of the harmless or beneficial bacteria that colonize the small and large intestine.

NON-PROFESSIONAL ANTIGEN-PRESENTING CELLS

Cells that can be induced to express antigen-presenting molecules or non-classical antigen-presenting molecules. These cells also often lack expression of co-stimulatory molecules such as CD80 and CD86.

NK1.1+ T CELLS

Recently, these cells have been shown to be restricted by the non-classical MHC class Ib molecule CD1d. These cells respond to the antigens α-galactosylceramide and glycerol-phosphatidylinositol in mice and have important functions in immunity against infections and malignancies.

PEYER'S PATCHES

Organized lymphoid structures in the small intestine, underlying M cells. Peyer's patches consist of a T-cell zone surrounding a B-cell zone, similar to germinal centres in lymph nodes.

MICROFOLD CELLS

(M cells). Specialized epithelial cells that have a characteristic shape with a deep basolateral pocket and little cytoplasm. This makes them efficient at transporting insoluble materials across the epithelial-cell barrier, where these antigens immediately encounter macrophages and dendritic cells.

FMS-LIKE TYROSINE KINASE 3 LIGAND

(FLT3L). A cytokine that promotes the clonal expansion of dendritic cells in vivo.

PERIPHERAL TOLERANCE

Potentially autoreactive T cells that have escaped negative selection in the thymus (central tolerance) can be deleted or anergized by one of several mechanisms. Deletion can be mediated by high-affinity T-cell receptor (TCR) crosslinking or by CD95–CD95L-mediated apoptosis. Anergy can occur when incomplete activation signals are sent through the TCR (low-affinity interactions) or when there is a lack of co-stimulation during activation.

ANERGY

A reversible immune hyporesponsiveness to antigen. Incomplete activation signals mediated by low-affinity T-cell receptor interactions or a lack of co-stimulation can lead to anergy. Anergy has been shown to be reversible by stimulation with antigen and interleukin-2.

BYSTANDER SUPPRESSION

Antigen non-specific inhibition of the immune response by virtue of temporal and physical proximity to regulatory cells.

SYSTEMIC ADJUVANTS

Substances that help initiate a robust immune response. Typically, adjuvants contain a mixture of substances that mimic an active infection, such as bacterial cell-wall components to simulate danger signals and emulsifiers to allow for the slow release of antigen.

MIMETOPE

An epitope that structurally resembles another. Epitopes are three-dimensional structural motifs recognized by antibodies or by T-cell receptors (in the context of MHC). Similar or identical three-dimensional structures can be created by different peptides or synthetic compounds and can mimic the activity of the original antigen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, L., Shao, L. Therapeutic potential of oral tolerance. Nat Rev Immunol 4, 407–419 (2004). https://doi.org/10.1038/nri1370

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1370

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing