Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcriptional control of the inflammatory response

Key Points

  • A key point of control of inflammation is at the level of transcription.

  • In macrophages, which are key orchestrators of the inflammatory response, transcriptional control of inflammation enables the autonomous modulation of different functional programmes, such as cell migration, antimicrobial defence, tissue repair and phagocytosis.

  • Three classes of transcription factors (constitutively expressed, inducible in a stimulus-dependent manner and lineage-specifying) have distinct but coordinated functions in regulating the inflammatory response in macrophages.

  • The transcriptional response induced by Toll-like receptor signalling in macrophages is a well-studied model system for understanding transcriptional control of inflammation. This complex gene expression programme can be divided into a primary and secondary response, which are regulated by distinct mechanisms.

  • Many physiological signals negatively regulate inflammation at the transcriptional level. This also enables the inhibition of distinct functional modules of the inflammatory response.

Abstract

Inflammation is a multicomponent response to tissue stress, injury and infection, and a crucial point of its control is at the level of gene transcription. The inducible inflammatory gene expression programme — such as that triggered by Toll-like receptor signalling in macrophages — is comprised of several coordinately regulated sets of genes that encode key functional programmes; these are controlled by three classes of transcription factors, as well as various transcriptional co-regulators and chromatin modifications. Here, we discuss the mechanisms of and the emerging principles in the transcriptional regulation of inflammatory responses in diverse physiological settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lipopolysaccharide (LPS)-induced primary and secondary response genes are regulated by three categories of transcription factors.
Figure 2: Two distinct modes for regulating inducible genes.
Figure 3: Control of inflammatory gene expression by co-activators and co-repressors.

Similar content being viewed by others

References

  1. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Nathan, C. Points of control in inflammation. Nature 420, 846–852 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Ramsey, S. A. et al. Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput. Biol. 4, e1000021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ravasi, T., Wells, C. A. & Hume, D. A. Systems biology of transcription control in macrophages. Bioessays 29, 1215–1226 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Ting, J. P., Kastner, D. L. & Hoffman, H. M. CATERPILLERs, pyrin and hereditary immunological disorders. Nature Rev. Immunol. 6, 183–195 (2006).

    Article  CAS  Google Scholar 

  7. Horton, J. D. & Shimomura, I. Sterol regulatory element-binding proteins: activators of cholesterol and fatty acid biosynthesis. Curr. Opin. Lipidol. 10, 143–150 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Kensler, T. W., Wakabayashi, N. & Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Weidemann, A. & Johnson, R. S. Biology of HIF-1α. Cell Death Differ. 15, 621–627 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Iwakoshi, N. N., Lee, A. H. & Glimcher, L. H. The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein response. Immunol. Rev. 194, 29–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Gu, Y. Z., Hogenesch, J. B. & Bradfield, C. A. The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol. 40, 519–561 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Hayden, M. S. & Ghosh, S. Shared principles in NF-κB signaling. Cell 132, 344–362 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Saitoh, T. et al. Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nature Immunol. 7, 598–605 (2006).

    Article  CAS  Google Scholar 

  14. Covert, M. W., Leung, T. H., Gaston, J. E. & Baltimore, D. Achieving stability of lipopolysaccharide-induced NF-κB activation. Science 309, 1854–1857 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Werner, S. L., Barken, D. & Hoffmann, A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309, 1857–1861 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Litvak, V. et al. Function of C/EBPδ in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nature Immunol. 10, 437–443 (2009). This paper delineates a transcriptional circuitry in the LPS-inducible gene expression programme in macrophages.

    Article  CAS  Google Scholar 

  17. Friedman, A. D. Transcriptional control of granulocyte and monocyte development. Oncogene 26, 6816–6828 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Valledor, A. F., Borras, F. E., Cullell-Young, M. & Celada, A. Transcription factors that regulate monocyte/macrophage differentiation. J. Leukoc. Biol. 63, 405–417 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Zeng, C. et al. Identification of a nuclear matrix targeting signal in the leukemia and bone-related AML/CBF-α transcription factors. Proc. Natl Acad. Sci. USA 94, 6746–6751 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298, 1241–1245 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Basak, S. et al. A fourth IκB protein within the NF-κB signaling module. Cell 128, 369–381 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kearns, J. D. & Hoffmann, A. Integrating computational and biochemical studies to explore mechanisms in NF-κB signaling. J. Biol. Chem. 284, 5439–5443 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bernstein, B. E., Meissner, A. & Lander, E. S. The mammalian epigenome. Cell 128, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Saccani, S., Pantano, S. & Natoli, G. p38-Dependent marking of inflammatory genes for increased NF-κB recruitment. Nature Immunol. 3, 69–75 (2002). One of the first papers to show how a specific histone modification is coupled to the upregulation of expression of a subset of LPS-inducible genes.

    Article  CAS  Google Scholar 

  26. Hazzalin, C. A. & Mahadevan, L. C. Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun. PLoS Biol. 3, e393 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Anest, V. et al. A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression. Nature 423, 659–663 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto, Y., Verma, U. N., Prajapati, S., Kwak, Y. T. & Gaynor, R. B. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423, 655–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, W. et al. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol. Cell 29, 69–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Santa, F. et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130, 1083–1094 (2007). This paper shows how a histone-modifying enzyme functions in the regulation of a subset of LPS-inducible genes.

    Article  CAS  PubMed  Google Scholar 

  31. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Hargreaves, D. C., Horng, T. & Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138, 129–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Becker, P. B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Lai, D. et al. Induction of TLR4-target genes entails calcium/calmodulin-dependent regulation of chromatin remodeling. Proc. Natl Acad. Sci. USA 106, 1169–1174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramirez-Carrozzi, V. R. et al. Selective and antagonistic functions of SWI/SNF and Mi-2β nucleosome remodeling complexes during an inflammatory response. Genes Dev. 20, 282–296 (2006). This paper identifies distinct classes of LPS-inducible inflammatory genes based on the requirement for signal-dependent chromatin remodelling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kayama, H. et al. Class-specific regulation of pro-inflammatory genes by MyD88 pathways and IκBζ. J. Biol. Chem. 283, 12468–12477 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Ramirez-Carrozzi, V. R. et al. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138, 114–128 (2009). This paper shows that many of the regulatory properties of rapidly inducible inflammatory genes are associated with their GC-rich promoters.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lomvardas, S. & Thanos, D. Modifying gene expression programs by altering core promoter chromatin architecture. Cell 110, 261–271 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Natoli, G., Saccani, S., Bosisio, D. & Marazzi, I. Interactions of NF-κB with chromatin: the art of being at the right place at the right time. Nature Immunol. 6, 439–445 (2005).

    Article  CAS  Google Scholar 

  40. Herschman, H. R. Primary response genes induced by growth factors and tumor promoters. Annu. Rev. Biochem. 60, 281–319 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Huang, Z. Q., Li, J., Sachs, L. M., Cole, P. A. & Wong, J. A role for cofactor–cofactor and cofactor–histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO J. 22, 2146–2155 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamamoto, M. et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ. Nature 430, 218–222 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Leung, T. H., Hoffmann, A. & Baltimore, D. One nucleotide in a κB site can determine cofactor specificity for NF-κB dimers. Cell 118, 453–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Ogawa, S. et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122, 707–721 (2005). This paper describes signal-specific and gene-specific inhibition of inflammatory gene expression by nuclear receptors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wietek, C., Miggin, S. M., Jefferies, C. A. & O'Neill, L. A. Interferon regulatory factor-3-mediated activation of the interferon-sensitive response element by Toll-like receptor (TLR) 4 but not TLR3 requires the p65 subunit of NF-κ. J. Biol. Chem. 278, 50923–50931 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Chen-Park, F. E., Huang, D. B., Noro, B., Thanos, D. & Ghosh, G. The κB DNA sequence from the HIV long terminal repeat functions as an allosteric regulator of HIV transcription. J. Biol. Chem. 277, 24701–24708 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Ghisletti, S. et al. Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev. 23, 681–693 (2009). This paper shows repression of partially overlapping sets of inflammatory genes by two co-repressors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, W., Ghisletti, S., Perissi, V., Rosenfeld, M. G. & Glass, C. K. Transcriptional integration of TLR2 and TLR4 signaling at the NCoR derepression checkpoint. Mol. Cell 35, 48–57 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ogawa, S. et al. A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation. Proc. Natl Acad. Sci. USA 101, 14461–14466 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liew, F. Y., Xu, D., Brint, E. K. & O'Neill, L. A. Negative regulation of Toll-like receptor-mediated immune responses. Nature Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  Google Scholar 

  51. Thanos, D. & Maniatis, T. Identification of the rel family members required for virus induction of the human beta interferon gene. Mol. Cell Biol. 15, 152–164 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Bates, P. W. & Miyamoto, S. Expanded nuclear roles for IκBs. Sci. STKE 2004, pe48 (2004).

    PubMed  Google Scholar 

  54. Kuwata, H. et al. IκBNS inhibits induction of a subset of Toll-like receptor-dependent genes and limits inflammation. Immunity 24, 41–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Wessells, J. et al. BCL-3 and NF-κB p50 attenuate lipopolysaccharide-induced inflammatory responses in macrophages. J. Biol. Chem. 279, 49995–50003 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Carmody, R. J., Ruan, Q., Palmer, S., Hilliard, B. & Chen, Y. H. Negative regulation of Toll-like receptor signaling by NF-κB p50 ubiquitination blockade. Science 317, 675–678 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Hirotani, T. et al. The nuclear IκB protein IκBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria. J. Immunol. 174, 3650–3657 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Kuwata, H. et al. IL-10-inducible Bcl-3 negatively regulates LPS-induced TNF-α production in macrophages. Blood 102, 4123–4129 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Murray, P. J. The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proc. Natl Acad. Sci. USA 102, 8686–8691 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wall, E. A. et al. Suppression of LPS-induced TNF-α production in macrophages by cAMP is mediated by PKA-AKAP95-p105. Sci. Signal 2, ra28 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Glass, C. K. & Ogawa, S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nature Rev. Immunol. 6, 44–55 (2006).

    Article  CAS  Google Scholar 

  63. Giles, K. M. et al. Glucocorticoid augmentation of macrophage capacity for phagocytosis of apoptotic cells is associated with reduced p130Cas expression, loss of paxillin/pyk2 phosphorylation, and high levels of active Rac. J. Immunol. 167, 976–986 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Lee, C. H. et al. Transcriptional repression of atherogenic inflammation: modulation by PPARδ. Science 302, 453–457 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Yeung, F. et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kawahara, T. L. et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell 136, 62–74 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hu, X. et al. Integrated regulation of Toll-like receptor responses by Notch and interferon-γ pathways. Immunity 29, 691–703 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kincaid, E. Z. & Ernst, J. D. Mycobacterium tuberculosis exerts gene-selective inhibition of transcriptional responses to IFN-γ without inhibiting STAT1 function. J. Immunol. 171, 2042–2049 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Hamon, M. A. & Cossart, P. Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe 4, 100–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Leng, J., Butcher, B. A., Egan, C. E., Abdallah, D. S. & Denkers, E. Y. Toxoplasma gondii prevents chromatin remodeling initiated by TLR-triggered macrophage activation. J. Immunol. 182, 489–497 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Hamon, M. A. et al. Histone modifications induced by a family of bacterial toxins. Proc. Natl Acad. Sci. USA 104, 13467–13472 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lefevre, P., Witham, J., Lacroix, C. E., Cockerill, P. N. & Bonifer, C. The LPS-induced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription. Mol. Cell 32, 129–139 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Baltimore, D., Boldin, M. P., O'Connell, R. M., Rao, D. S. & Taganov, K. D. MicroRNAs: new regulators of immune cell development and function. Nature Immunol. 9, 839–845 (2008).

    Article  CAS  Google Scholar 

  75. Ponting, C. P., Oliver, P. L. & Reik, W. Evolution and functions of long noncoding RNAs. Cell 136, 629–641 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Phillips, J. E. & Corces, V. G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Anderson, P. Post-transcriptional control of cytokine production. Nature Immunol. 9, 353–359 (2008).

    Article  CAS  Google Scholar 

  78. Hao, S. & Baltimore, D. The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nature Immunol. 10, 281–288 (2009).

    Article  CAS  Google Scholar 

  79. Matsushita, K. et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185–1190 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Foster, S. L. & Medzhitov, R. Gene-specific control of the TLR-induced inflammatory response. Clin. Immunol. 130, 7–15 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. El Gazzar, M., Yoza, B. K., Hu, J. Y., Cousart, S. L. & McCall, C. E. Epigenetic silencing of tumor necrosis factor α during endotoxin tolerance. J. Biol. Chem. 282, 26857–26864 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Foster, S. L., Hargreaves, D. C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Chan, C., Li, L., McCall, C. E. & Yoza, B. K. Endotoxin tolerance disrupts chromatin remodeling and NF-κB transactivation at the IL-1β promoter. J. Immunol. 175, 461–468 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Vermeulen, M. et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Lis, J. T. Imaging Drosophila gene activation and polymerase pausing in vivo. Nature 450, 198–202 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007). This study shows that RNA polymerase II is paused at the promoters of many mammalian genes across the genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Muse, G. W. et al. RNA polymerase is poised for activation across the genome. Nature Genet. 39, 1507–1511 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nature Genet. 39, 1512–1516 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Hargreaves, S. Foster and S. Smale for discussions. R.M. is an Investigator at the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Ruslan Medzhitov's homepage

Tiffany Horng's homepage

Glossary

Adipose tissue

A type of connective tissue that is specialized for the storage of neutral lipids.

Transcription factor

A specialized nuclear protein that can bind to DNA and regulate gene expression. Most transcription factors have transactivation or repressor domains but, in addition, they can function as architectural proteins and promote chromatin remodelling by recruiting additional activator or repressor complexes.

Chromatin

Chromation is composed of DNA together with histones and other associated proteins.

Transcriptional co-regulator

Transcriptional co-regulators lack DNA-binding specificity and must be recruited to their target genes through interactions with transcription factors or by binding to particular chromatin modifications. Co-regulators have an important role in modulating gene expression and in many cases couple transcription factors to downstream effector mechanisms for gene regulation.

Small interfering RNA (siRNA)-mediated knockdown

Double-stranded RNAs (dsRNAs) with sequences that precisely match a given gene can 'knockdown' the expression of that gene by directing RNA-degrading enzymes to destroy the encoded mRNA transcript. The two most common forms of dsRNA used for gene silencing are short — usually 21-base pair long — siRNAs or the plasmid-delivered short hairpin RNAs (shRNAs).

Polycomb proteins

A group of proteins that are required to maintain the silencing of genes encoding key developmental regulators, such as Hox.

Nucleosome

This is the basic repeating unit of eukaryotic genomes. Nucleosomes consist of 146 base pairs of DNA wound around an octamer of histone proteins.

SWI–SNF

(switching-defective–sucrose non-fermenting). An ATP-dependent chromatin remodelling protein complex that was first identified in yeast. Related complexes exist in mammals (where they are known as BAF) and are involved in the chromatin remodelling of various genes.

CpG island

A sequence of 0.5–2 kilobases that is rich in CpG dinucleotides. They are mostly located upstream of housekeeping genes and also of some tissue-specific genes, and they coincide with gene promoters in these contexts. In mammalian cells, most CpG islands are hypomethylated with respect to the rest of the genome.

Transcriptional co-repressor

Transcriptional co-repressors are protein complexes, including NCOR and SMRT, that associate with nuclear hormone receptors and other transcriptional regulators to inhibit gene transcription. A common mechanism of repression is by recruiting histone-deacetylase complexes to reverse the actions of histone acetyltransferases.

CBP–p300

CREB-binding protein (CBP) and p300 are transcriptional co-activators that interact with many transcription factors to promote recruitment of the RNA polymerase holoenzyme and other transcriptional regulators, thereby allowing transcriptional induction. In addition, p300 and CBP have histone acetyltransferase activity, such that these proteins can influence chromatin activity by modulating nucleosomal histones.

Histone acetyltransferase

A protein that acetylates core histones on lysine residues, which has important regulatory effects on chromatin structure and assembly, and on gene transcription. In general, increased levels of histone acetylation are associated with activation of gene expression.

Histone deacetylase

A protein that removes the acetyl groups from lysine residues that are located at the amino termini of histones. In general, decreased levels of histone acetylation are associated with the repression of gene expression. The balance of histone acetylation is maintained by the interplay between histone deacetylases and histone acetyltransferases.

Endotoxic shock

A clinical condition that is induced by hyper-reaction of the innate immune system to bacterial LPS. It is mediated by the inflammatory cytokines IL-1 and TNF, which are produced in large amounts due to sustained stimulation of TLR4 by LPS.

Septic shock

A systemic response to severe bacterial infections, which is generally caused by Gram-negative bacterial endotoxins, that leads to a hyperactive and out-of-balance network of inflammatory cytokines, affecting vascular permeability, cardiac function and metabolic balance. This can lead to tissue necrosis, multiple-organ failure and death.

Deacetylation

Acetylation is a post-translational modification of chromatin components, particularly histones, and other proteins. Histone deacetylases have been identified as components of nuclear co-repressor complexes.

Notch pathway

A pathway comprising highly conserved transmembrane receptors that regulate cell-fate choice in the development of many cell lineages, and so are crucial for the regulation of embryonic differentiation and development.

MicroRNAs

Single-stranded RNA molecules of approximately 21–23 nucleotides in length that are thought to regulate the expression of other genes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medzhitov, R., Horng, T. Transcriptional control of the inflammatory response. Nat Rev Immunol 9, 692–703 (2009). https://doi.org/10.1038/nri2634

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2634

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing