Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The importance of natural IgM: scavenger, protector and regulator

Key Points

  • Natural IgM, a pentameric, polyreactive antibody, is mainly secreted by peritoneal B1 B cells and recognizes and binds self antigens such as phospholipids. The unique structure of natural IgM allows it to interact with many other components of the immune system, including members of the complement system, mannose-binding lectin and Fc receptor(s) for IgM.

  • B cell survival and development in different compartments is differentially influenced by IgM. Natural IgM promotes the generation of mature B cells in the spleen but reduces the survival of peritoneal B cells. In the absence of secreted IgM, marginal zone B cell and peritoneal B1a B cell generation is favoured.

  • Natural IgM has a key function in protecting against a range of viral, bacterial, fungal and parasitic infections. Its polyreactivity and high valency facilitates binding to pathogens, and enhances pathogen neutralization and agglutination. Natural IgM can therefore function to promote clearance and limit dissemination of pathogens and, with help from complement component C1q, boosts their engulfment by phagocytes and increases the presentation of pathogen-derived antigens.

  • One key property of natural IgM is the promotion of the engulfment of apoptotic cells. The process of apoptotic cell clearance can lead to an anti-inflammatory environment in which B cells and macrophages increase their production of interleukin-10. Defects in apoptotic cell clearance and reduced serum IgM levels have been identified in patients with systemic lupus erythematosus.

  • Therapies that target B cells to treat autoimmunity may lead to a reduction in serum IgM, thereby increasing the risk of infection and potentially promoting autoimmunity.

Abstract

The existence of IgM has been known for more than a century, but its importance in immunity and autoimmunity continues to emerge. Studies of mice deficient in secreted IgM have provided unexpected insights into its role in several diverse processes, from B cell survival to atherosclerosis, as well as in autoimmunity and protection against infection. Among the various distinct properties that underlie the functions of IgM, two stand out: its polyreactivity and its ability to facilitate the removal of apoptotic cells. In addition, new B cell-targeted therapies for the treatment of autoimmunity have been shown to cause a reduction in serum IgM, potentially disrupting the functions of this immunoregulatory molecule and increasing susceptibility to infection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic depiction of IgM structure.
Figure 2: IgM directs apoptotic cells to macrophages through the recruitment of C1q and MBL.
Figure 3: The influence of natural IgM on self antigen engagement by the B cell receptor.
Figure 4: Natural IgM modifies B cell survival through modulation of B cell receptor signalling.

Similar content being viewed by others

References

  1. Fellah, J. S., Wiles, M. V., Charlemagne, J. & Schwager, J. Evolution of vertebrate IgM: complete amino acid sequence of the constant region of Ambystoma mexicanum μ chain deduced from cDNA sequence. Eur. J. Immunol. 22, 2595–2601 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Fuentes-Panana, E. M., Bannish, G. & Monroe, J. G. Basal B-cell receptor signaling in B lymphocytes: mechanisms of regulation and role in positive selection, differentiation, and peripheral survival. Immunol. Rev. 197, 26–40 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Srinivasan, L. et al. PI3 kinase signals BCR-dependent mature B cell survival. Cell 139, 573–586 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coutinho, A., Kazatchkine, M. D. & Avrameas, S. Natural autoantibodies. Curr. Opin. Immunol. 7, 812–818 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Haury, M. et al. The repertoire of serum IgM in normal mice is largely independent of external antigenic contact. Eur. J. Immunol. 27, 1557–1563 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Boes, M. et al. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J. Immunol. 160, 4776–4787 (1998).

    CAS  PubMed  Google Scholar 

  7. Ehrenstein, M. R., O'Keefe, T. L., Davies, S. L. & Neuberger, M. S. Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response. Proc. Natl Acad. Sci. USA 95, 10089–10093 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Randall, T. D., Brewer, J. W. & Corley, R. B. Direct evidence that J chain regulates the polymeric structure of IgM in antibody-secreting B cells. J. Biol. Chem. 267, 18002–18007 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Czajkowsky, D. M. & Shao, Z. The human IgM pentamer is a mushroom-shaped molecule with a flexural bias. Proc. Natl Acad. Sci. USA 106, 14960–14965 (2009). A mechanistic explanation for C1q activation by IgM, using a homology-based structural model and cryo-atomic force microscopy, that predicted protruding and fully exposed IgM binding sites for C1q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, F. H. et al. Domain-switched mouse IgM/IgG2b hybrids indicate individual roles for Cμ2, Cμ3, and Cμ4 domains in the regulation of the interaction of IgM with complement C1q. J. Immunol. 159, 3354–3363 (1997).

    CAS  PubMed  Google Scholar 

  11. Quartier, P., Potter, P. K., Ehrenstein, M. R., Walport, M. J. & Botto, M. Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur. J. Immunol. 35, 252–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Ogden, C. A., Kowalewski, R., Peng, Y., Montenegro, V. & Elkon, K. B. IgM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity 38, 259–264 (2005). References 11 and 12 show that the ability of C1q to facilitate clearance of apoptotic cells depends on natural IgM.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, Y., Park, Y. B., Patel, E. & Silverman, G. J. IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J. Immunol. 182, 6031–6043 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Nauta, A. J. et al. Mannose-binding lectin engagement with late apoptotic and necrotic cells. Eur. J. Immunol. 33, 2853–2863 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Arnold, J. N. et al. Human serum IgM glycosylation: identification of glycoforms that can bind to mannan-binding lectin. J. Biol. Chem. 280, 29080–29087 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, Y. et al. Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J. Immunol. 183, 1346–1359 (2009). A key discovery showing that a natural IgM can directly inhibit inflammation.

    Article  CAS  PubMed  Google Scholar 

  17. Shima, H. et al. Identification of TOSO/FAIM3 as an Fc receptor for IgM. Int. Immunol. 22, 149–156 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Kubagawa, H. et al. Identity of the elusive IgM Fc receptor (FcμR) in humans. J. Exp. Med. 206, 2779–2793 (2009). An important milestone in the description of Fc receptors that bind IgM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shibuya, A. et al. Fcα/μ receptor mediates endocytosis of IgM-coated microbes. Nature Immunol. 1, 441–446 (2000).

    Article  CAS  Google Scholar 

  20. Kikuno, K. et al. Unusual biochemical features and follicular dendritic cell expression of human Fcα/μ receptor. Eur. J. Immunol. 37, 3540–3550 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Honda, S. et al. Enhanced humoral immune responses against T-independent antigens in Fcα/μR-deficient mice. Proc. Natl Acad. Sci. USA 106, 11230–11235 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baker, N. & Ehrenstein, M. R. Cutting edge: selection of B lymphocyte subsets is regulated by natural IgM. J. Immunol. 169, 6686–6690 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Baumgarth, N., Tung, J. W. & Herzenberg, L. A. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin. Immunopathol. 26, 347–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Thurnheer, M. C., Zuercher, A. W., Cebra, J. J. & Bos, N. A. B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice. J. Immunol. 170, 4564–4571 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Martin, F. & Kearney, J. F. Marginal-zone B cells. Nature Rev. Immunol. 2, 323–335 (2002).

    Article  CAS  Google Scholar 

  26. Kretschmer, K. et al. The selection of marginal zone B cells differs from that of B-1a cells. J. Immunol. 171, 6495–6501 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Carey, J. B., Moffatt-Blue, C. S., Watson, L. C., Gavin, A. L. & Feeney, A. J. Repertoire-based selection into the marginal zone compartment during B cell development. J. Exp. Med. 205, 2043–2052 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duber, S. et al. Induction of B-cell development in adult mice reveals the ability of bone marrow to produce B-1a cells. Blood 114, 4960–4967 (2009).

    Article  PubMed  CAS  Google Scholar 

  29. Hastings, W. D., Tumang, J. R., Behrens, T. W. & Rothstein, T. L. Peritoneal B-2 cells comprise a distinct B-2 cell population with B-1b-like characteristics. Eur. J. Immunol. 36, 1114–1123 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Gobet, R., Cerny, A., Ruedi, E., Hengartner, H. & Zinkernagel, R. M. The role of antibodies in natural and acquired resistance of mice to vesicular stomatitis virus. Exp. Cell Biol. 56, 175–180 (1988).

    CAS  PubMed  Google Scholar 

  31. Ochsenbein, A. F. et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 286, 2156–2159 (1999). One of the first papers to identify natural antibodies specific for viral antigens in the sera of mice. Natural antibodies are crucial for preventing pathogen dissemination to vital organs and for improving immunogenicity by trapping antigen in secondary lymphoid organs.

    Article  CAS  PubMed  Google Scholar 

  32. Boes, M., Prodeus, A. P., Schmidt, T., Carroll, M. C. & Chen, J. A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J. Exp. Med. 188, 2381–2386 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baumgarth, N. et al. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med. 192, 271–280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alugupalli, K. R. et al. The resolution of relapsing fever borreliosis requires IgM and is concurrent with expansion of B1b lymphocytes. J. Immunol. 170, 3819–3827 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Choi, Y. S. & Baumgarth, N. Dual role for B-1a cells in immunity to influenza virus infection. J. Exp. Med. 205, 3053–3064 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gil-Cruz, C. et al. The porin OmpD from nontyphoidal Salmonella is a key target for a protective B1b cell antibody response. Proc. Natl Acad. Sci. USA 106, 9803–9808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Malkiel, S., Kuhlow, C. J., Mena, P. & Benach, J. L. The loss and gain of marginal zone and peritoneal B cells is different in response to relapsing fever and Lyme disease Borrelia. J. Immunol. 182, 498–506 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Briles, D. E. et al. Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 Streptococcus pneumoniae. J. Exp. Med. 153, 694–705 (1981).

    Article  CAS  PubMed  Google Scholar 

  39. Jayasekera, J. P., Moseman, E. A. & Carroll, M. C. Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. J. Virol. 81, 3487–3494 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brown, J. S. et al. The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc. Natl Acad. Sci. USA 99, 16969–16974 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Connolly, S. E. & Benach, J. L. Cutting edge: the spirochetemia of murine relapsing fever is cleared by complement-independent bactericidal antibodies. J. Immunol. 167, 3029–3032 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Rajan, B., Ramalingam, T. & Rajan, T. V. Critical role for IgM in host protection in experimental filarial infection. J. Immunol. 175, 1827–1833 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Subramaniam, K. S. et al. The absence of serum IgM enhances the susceptibility of mice to pulmonary challenge with Cryptococcus neoformans. J. Immunol. 184, 5755–5767 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Subramaniam, K. S., Datta, K., Marks, M. S. & Pirofski, L. A. Improved survival of mice deficient in secretory immunoglobulin M following systemic infection with Cryptococcus neoformans. Infect. Immun. 78, 441–452 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Ghumra, A. et al. Identification of residues in the Cμ4 domain of polymeric IgM essential for interaction with Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). J. Immunol. 181, 1988–2000 (2008). An important finding indicating that the constant region of IgM can bind to a malaria protein, potentially interfering with immune function and also explaining the occurrence of red blood cell rosetting in malaria.

    Article  CAS  PubMed  Google Scholar 

  46. Harte, P. G., Cooke, A. & Playfair, J. H. Specific monoclonal IgM is a potent adjuvant in murine malaria vaccination. Nature 302, 256–258 (1983).

    Article  CAS  PubMed  Google Scholar 

  47. Couper, K. N., Phillips, R. S., Brombacher, F. & Alexander, J. Parasite-specific IgM plays a significant role in the protective immune response to asexual erythrocytic stage Plasmodium chabaudi AS infection. Parasite Immunol. 27, 171–180 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Fabrizio, K., Groner, A., Boes, M. & Pirofski, L. A. A human monoclonal immunoglobulin M reduces bacteremia and inflammation in a mouse model of systemic pneumococcal infection. Clin. Vaccine Immunol. 14, 382–390 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baxendale, H. E. et al. Natural human antibodies to pneumococcus have distinctive molecular characteristics and protect against pneumococcal disease. Clin. Exp. Immunol. 151, 51–60 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stehr, S. N. et al. Effects of IgM-enriched solution on polymorphonuclear neutrophil function, bacterial clearance, and lung histology in endotoxemia. Shock 29, 167–172 (2008).

    Article  PubMed  Google Scholar 

  51. Notley, C. A., Baker, N. & Ehrenstein, M. R. Secreted IgM enhances B cell receptor signaling and promotes splenic but impairs peritoneal B cell survival. J. Immunol. 184, 3386–3393 (2010). Natural IgM is shown to differentially influence B cell survival in the spleen and in the peritoneum by altering the strength of signalling through the BCR.

    Article  CAS  PubMed  Google Scholar 

  52. Cariappa, A. & Pillai, S. Antigen-dependent B-cell development. Curr. Opin. Immunol. 14, 241–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Weill, J. C. & Reynaud, C. A. Do developing B cells need antigen? J. Exp. Med. 201, 7–9 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rosado, M. M. & Freitas, A. A. The role of the B cell receptor V region in peripheral B cell survival. Eur. J. Immunol. 28, 2685–2693 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Gaudin, E. et al. Positive selection of B cells expressing low densities of self-reactive BCRs. J. Exp. Med. 199, 843–853 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jacobi, A. M. et al. Effect of long-term belimumab treatment on B cells in systemic lupus erythematosus: extension of a phase II, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum. 62, 201–210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hardy, R. R. B-1 B cell development. J. Immunol. 177, 2749–2754 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Ferry, H. et al. Increased positive selection of B1 cells and reduced B cell tolerance to intracellular antigens in C1q-deficient mice. J. Immunol. 178, 2916–2922 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Dal Porto, J. M., Burke, K. & Cambier, J. C. Regulation of BCR signal transduction in B-1 cells requires the expression of the Src family kinase Lck. Immunity 21, 443–453 (2004).

    Article  PubMed  Google Scholar 

  60. Wong, S. C. et al. Peritoneal CD5+ B-1 cells have signaling properties similar to tolerant B cells. J. Biol. Chem. 277, 30707–30715 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Ehrenstein, M. R., Cook, H. T. & Neuberger, M. S. Deficiency in serum immunoglobulin (Ig)M predisposes to development of IgG autoantibodies. J. Exp. Med. 191, 1253–1258 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boes, M. et al. Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc. Natl Acad. Sci. USA 97, 1184–1189 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lewis, M. J. et al. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 120, 417–426 (2009). A demonstration that lack of natural IgM greatly accelerates atherosclerosis in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Senaldi, G. et al. IgM reduction in systemic lupus erythematosus. Arthritis Rheum. 31, 1213 (1988).

    Article  CAS  PubMed  Google Scholar 

  65. Perniok, A., Wedekind, F., Herrmann, M., Specker, C. & Schneider, M. High levels of circulating early apoptic peripheral blood mononuclear cells in systemic lupus erythematosus. Lupus 7, 113–118 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Sjoberg, B. G. et al. Low levels of IgM antibodies against phosphorylcholine-A potential risk marker for ischemic stroke in men. Atherosclerosis 203, 528–532 (2009).

    Article  PubMed  CAS  Google Scholar 

  67. Tsimikas, S. et al. Relationship of IgG and IgM autoantibodies to oxidized low density lipoprotein with coronary artery disease and cardiovascular events. J. Lipid Res. 48, 425–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Casciola-Rosen, L. A., Anhalt, G. & Rosen, A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 179, 1317–1330 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Ravichandran, K. S. & Lorenz, U. Engulfment of apoptotic cells: signals for a good meal. Nature Rev. Immunol. 7, 964–974 (2007).

    Article  CAS  Google Scholar 

  70. Peng, Y., Kowalewski, R., Kim, S. & Elkon, K. B. The role of IgM antibodies in the recognition and clearance of apoptotic cells. Mol. Immunol. 42, 781–787 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Shaw, P. X., Goodyear, C. S., Chang, M. K., Witztum, J. L. & Silverman, G. J. The autoreactivity of anti-phosphorylcholine antibodies for atherosclerosis-associated neo-antigens and apoptotic cells. J. Immunol. 170, 6151–6157 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Tuominen, A. et al. A natural antibody to oxidized cardiolipin binds to oxidized low-density lipoprotein, apoptotic cells, and atherosclerotic lesions. Arterioscler. Thromb. Vasc Biol. 26, 2096–2102 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Botto, M. & Walport, M. J. C1q, autoimmunity and apoptosis. Immunobiology 205, 395–406 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Gray, M., Miles, K., Salter, D., Gray, D. & Savill, J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc. Natl Acad. Sci. USA 104, 14080–14085 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhong, X. et al. A novel subpopulation of B-1 cells is enriched with autoreactivity in normal and lupus-prone mice. Arthritis Rheum. 60, 3734–3743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Enghard, P. et al. Class switching and consecutive loss of dsDNA-reactive B1a B cells from the peritoneal cavity during murine lupus development. Eur. J. Immunol. 40, 1809–1818 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Ryan, G. A. et al. B1 cells promote pancreas infiltration by autoreactive T cells. J. Immunol. 185, 2800–2807 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Murakami, M., Yoshioka, H., Shirai, T., Tsubata, T. & Honjo, T. Prevention of autoimmune symptoms in autoimmune-prone mice by elimination of B-1 cells. Int. Immunol. 7, 877–882 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Kanevets, U., Sharma, K., Dresser, K. & Shi, Y. A role of IgM antibodies in monosodium urate crystal formation and associated adjuvanticity. J. Immunol. 182, 1912–1918 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Kulik, L. et al. Pathogenic natural antibodies recognizing annexin IV are required to develop intestinal ischemia-reperfusion injury. J. Immunol. 182, 5363–5373 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Haas, M. S. et al. Blockade of self-reactive IgM significantly reduces injury in a murine model of acute myocardial infarction. Cardiovasc. Res. 87, 618–627 (2010). A key finding demonstrating the importance of IgM in a model of myocardial infarction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hamaguchi, Y. et al. The peritoneal cavity provides a protective niche for B1 and conventional B lymphocytes during anti-CD20 immunotherapy in mice. J. Immunol. 174, 4389–4399 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Popa, C., Leandro, M. J., Cambridge, G. & Edwards, J. C. Repeated B lymphocyte depletion with rituximab in rheumatoid arthritis over 7 yrs. Rheumatology (Oxford) 46, 626–630 (2007).

    Article  CAS  Google Scholar 

  84. Tak, P. P. et al. Atacicept in patients with rheumatoid arthritis: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating, single- and repeated-dose study. Arthritis Rheum. 58, 61–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–2114 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Major, A. S., Fazio, S. & Linton, M. F. B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler Thromb. Vasc Biol. 22, 1892–1898 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Ait-Oufella, H. et al. B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 207, 1579–1587 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kawahara, T., Ohdan, H., Zhao, G., Yang, Y. G. & Sykes, M. Peritoneal cavity B cells are precursors of splenic IgM natural antibody-producing cells. J. Immunol. 171, 5406–5414 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Baumgarth, N. et al. Innate and acquired humoral immunities to influenza virus are mediated by distinct arms of the immune system. Proc. Natl Acad. Sci. USA 96, 2250–2255 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Diamond, M. S. et al. A critical role for induced IgM in the protection against West Nile virus infection. J. Exp. Med. 198, 1853–1862 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Seiler, P. et al. Enhanced virus clearance by early inducible lymphocytic choriomeningitis virus-neutralizing antibodies in immunoglobulin-transgenic mice. J. Virol. 72, 2253–2258 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kinoshita, M. et al. Restoration of natural IgM production from liver B cells by exogenous IL-18 improves the survival of burn-injured mice infected with Pseudomonas aeruginosa. J. Immunol. 177, 4627–4635 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Bitsaktsis, C., Nandi, B., Racine, R., MacNamara, K. C. & Winslow, G. T-cell-independent humoral immunity is sufficient for protection against fatal intracellular Ehrlichia infection. Infect. Immun. 75, 4933–4941 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yager, E., Bitsaktsis, C., Nandi, B., McBride, J. W. & Winslow, G. Essential role for humoral immunity during Ehrlichia infection in immunocompetent mice. Infect. Immun. 73, 8009–8016 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Salinas-Carmona, M. C. & Perez-Rivera, I. Humoral immunity through immunoglobulin M protects mice from an experimental actinomycetoma infection by Nocardia brasiliensis. Infect. Immun. 72, 5597–5604 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Connolly, S. E., Thanassi, D. G. & Benach, J. L. Generation of a complement-independent bactericidal IgM against a relapsing fever Borrelia. J. Immunol. 172, 1191–1197 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Martin, F., Oliver, A. M. & Kearney, J. F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Couper, K. N., Roberts, C. W., Brombacher, F., Alexander, J. & Johnson, L. L. Toxoplasma gondii-specific immunoglobulin M limits parasite dissemination by preventing host cell invasion. Infect. Immun. 73, 8060–8068 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Konishi, E. & Nakao, M. Naturally occurring immunoglobulin M antibodies: enhancement of phagocytic and microbicidal activities of human neutrophils against Toxoplasma gondii. Parasitology 104, 427–432 (1992).

    Article  PubMed  Google Scholar 

  100. Baral, T. N., De Baetselier, P., Brombacher, F. & Magez, S. Control of Trypanosoma evansi infection is IgM mediated and does not require a type I inflammatory response. J. Infect. Dis. 195, 1513–1520 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Magez, S. et al. The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice. PLoS Pathog. 4, e1000122 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to F. Mackay and J. Brown for their comments. We apologize to all of our colleagues whose work could not be cited directly, owing to space constraints. This work has been supported by grants from Arthritis Research UK, The Wellcome Trust and the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Ehrenstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Michael R. Ehrenstein's homepage

Glossary

Follicular dendritic cells

Specialized non-haematopoietic stromal cells that reside in the lymphoid follicles and germinal centres. These cells have long dendrites and carry intact antigens on their surface. They are crucial for the optimal selection of B cells that produce antigen-binding antibodies.

T cell-independent antibody responses

Antibody responses to polymeric antigens, such as polysaccharides and lipids, that do not require T cell help.

B1 B cells

IgMhiIgDlowMAC1+B220lowCD23 cells that are the main population of B cells found in the peritoneal and pleural cavities. Their precursors develop in the fetal liver and omentum. In adult mice, the B1 B cell population is maintained at a constant size, owing to the self-renewing capacity of these cells. B1 B cells recognize self components, as well as common bacterial antigens, and secrete antibodies that tend to have low affinity and broad specificity. B1 B cells can be divided into at least two subsets, B1a and B1b, based on their expression of CD5. This description of B1 B cells is based on studies in mice; human B1 B cells have been less well characterized.

Caecal ligation and puncture

An experimental model of peritonitis in rodents, in which the caecum is ligated and then punctured, thereby forming a small hole. This leads to leakage of intestinal bacteria into the peritoneal cavity and subsequent peritoneal infection.

Lyme disease

A disease caused by the bacterium Borrelia burgdorferi or other Borrelia spp. that is transmitted to humans via the bites of infected blacklegged ticks. Symptoms can include skin rash, fever, fatigue, headache, muscle pain, stiff neck and swelling of the knee and other large joints. Most cases can be successfully treated with antibiotics.

Agglutination

Clumping of antigens in the presence of antibodies.

Erythrocyte rosetting

Red blood cells forming clumps around a cell; in malaria, non-infected erythrocytes rosette around infected red blood cells.

Intravenous immunoglobulin

Immunoglobulin (mainly IgG) that is pooled from a large number of individuals. It is used as a replacement in patients who have been depleted of immunoglobulins and for the treatment of patients with immunomodulatory disorders.

Immune complexes

Complexes of antigens bound to antibodies and, sometimes, components of the complement system. The levels of immune complexes are increased in many autoimmune disorders, in which they become deposited in tissues and cause tissue damage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrenstein, M., Notley, C. The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 10, 778–786 (2010). https://doi.org/10.1038/nri2849

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing