Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

TRAPP complexes in membrane traffic: convergence through a common Rab

Abstract

Transport protein particle (TRAPP; also known as trafficking protein particle), a multimeric guanine nucleotide-exchange factor for the yeast GTPase Ypt1 and its mammalian homologue, RAB1, regulates multiple membrane trafficking pathways. TRAPP complexes exist in three forms, each of which activates Ypt1 or RAB1 through a common core of subunits and regulates complex localization through distinct subunits. Whereas TRAPPI and TRAPPII tether coated vesicles during endoplasmic reticulum to Golgi and intra-Golgi traffic, respectively, TRAPPIII has recently been shown to be reqiured for autophagy. These advances illustrate how the TRAPP complexes link Ypt1 and RAB1 activation to distinct membrane-tethering events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The TRAPP complex exists in three forms.
Figure 2: TRAPP complexes function in different membrane trafficking pathways.

Similar content being viewed by others

References

  1. Palade, G. Intracellular aspects of the process of protein synthesis. Science 189, 347–358 (1975).

    Article  CAS  Google Scholar 

  2. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  Google Scholar 

  3. Lee, M. C., Miller, E. A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004).

    Article  CAS  Google Scholar 

  4. Cai, H., Reinisch, K. & Ferro-Novick, S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12, 671–682 (2007).

    Article  CAS  Google Scholar 

  5. Gillingham, A. K. & Munro, S. Long coiled-coil proteins and membrane traffic. Biochim. Biophys. Acta 1641, 71–85 (2003).

    Article  CAS  Google Scholar 

  6. Whyte, J. R. & Munro, S. Vesicle tethering complexes in membrane traffic. J. Cell Sci. 115, 2627–2637 (2002).

    CAS  PubMed  Google Scholar 

  7. Grosshans, B. L., Ortiz, D. & Novick, P. Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl Acad. Sci. USA 103, 11821–11827 (2006).

    Article  CAS  Google Scholar 

  8. Bacon, R. A., Salminen, A., Ruohola, H., Novick, P. & Ferro-Novick, S. The GTP-binding protein Ypt1 is required for transport in vitro: the Golgi apparatus is defective in ypt1 mutants. J. Cell Biol. 109, 1015–1022 (1989).

    Article  CAS  Google Scholar 

  9. Baker, D., Wuestehube, L., Schekman, R., Botstein, D. & Segev, N. GTP-binding Ypt1 protein and Ca2+ function independently in a cell-free protein transport reaction. Proc. Natl Acad. Sci. USA 87, 355–359 (1990).

    Article  CAS  Google Scholar 

  10. Barlowe, C. Coupled ER to Golgi transport reconstituted with purified cytosolic proteins. J. Cell Biol. 139, 1097–1108 (1997).

    Article  CAS  Google Scholar 

  11. Sacher, M. et al. TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J. 17, 2494–2503 (1998).

    Article  CAS  Google Scholar 

  12. Jahn, R. & Scheller, R. H. SNAREs — engines for membrane fusion. Nature Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  Google Scholar 

  13. Sacher, M. et al. TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport. Mol. Cell 7, 433–442 (2001).

    Article  CAS  Google Scholar 

  14. Montpetit, B. & Conibear, E. Identification of the novel TRAPP associated protein Tca17. Traffic 10, 713–723 (2009).

    Article  CAS  Google Scholar 

  15. Scrivens, P. J. et al. TRAPPC2L is a novel, highly conserved TRAPP-interacting protein. Traffic 10, 724–736 (2009).

    Article  CAS  Google Scholar 

  16. Miller, E. A. et al. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114, 497–509 (2003).

    Article  CAS  Google Scholar 

  17. Cai, H. et al. TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445, 941–944 (2007).

    Article  CAS  Google Scholar 

  18. Cai, H., Zhang, Y., Pypaert, M., Walker, L. & Ferro-Novick, S. Mutants in trs120 disrupt traffic from the early endosome to the late Golgi. J. Cell Biol. 171, 823–833 (2005).

    Article  CAS  Google Scholar 

  19. Yamasaki, A. et al. mTrs130 is a component of a mammalian TRAPPII complex, a Rab1 GEF that binds to COPI-coated vesicles. Mol. Biol. Cell 20, 4205–4215 (2009).

    Article  CAS  Google Scholar 

  20. Gedeon, A. K. et al. Identification of the gene (SEDL) causing X-linked spondyloepiphyseal dysplasia tarda. Nature Genet. 22, 400–404 (1999).

    Article  CAS  Google Scholar 

  21. Mir, A. et al. Identification of mutations in TRAPPC9, which encodes the NIK- and IKK-β-binding protein, in nonsyndromic autosomal-recessive mental retardation. Am. J. Hum. Genet. 85, 909–915 (2009).

    Article  CAS  Google Scholar 

  22. Mochida, G. H. et al. A truncating mutation of TRAPPC9 is associated with autosomal-recessive intellectual disability and postnatal microcephaly. Am. J. Hum. Genet. 85, 897–902 (2009).

    Article  CAS  Google Scholar 

  23. Philippe, O. et al. Combination of linkage mapping and microarray-expression analysis identifies NF-κB signaling defect as a cause of autosomal-recessive mental retardation. Am. J. Hum. Genet. 85, 903–908 (2009).

    Article  CAS  Google Scholar 

  24. Gwynn, B., Smith, R. S., Rowe, L. B., Taylor, B. A. & Peters, L. L. A mouse TRAPP-related protein is involved in pigmentation. Genomics 88, 196–203 (2006).

    Article  CAS  Google Scholar 

  25. Yu, S. et al. mBet3p is required for homotypic COPII vesicle tethering in mammalian cells. J. Cell Biol. 174, 359–368 (2006).

    Article  CAS  Google Scholar 

  26. Loh, E., Peter, F., Subramaniam, V. N. & Hong, W. Mammalian Bet3 functions as a cytosolic factor participating in transport from the ER to the Golgi apparatus. J. Cell Sci. 118, 1209–1222 (2005).

    Article  CAS  Google Scholar 

  27. Sacher, M., Barrowman, J., Schieltz, D., Yates, J. R. & Ferro-Novick, S. Identification and characterization of five new subunits of TRAPP. Eur. J. Cell Biol. 79, 71–80 (2000).

    Article  CAS  Google Scholar 

  28. Allan, B. B., Moyer, B. D. & Balch, W. E. Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289, 444–448 (2000).

    Article  CAS  Google Scholar 

  29. Bentley, M. et al. SNARE status regulates tether recruitment and function in homotypic COPII vesicle fusion. J. Biol. Chem. 281, 38825–38833 (2006).

    Article  CAS  Google Scholar 

  30. Kummel, D., Oeckinghaus, A., Wang, C., Krappmann, D. & Heinemann, U. Distinct isocomplexes of the TRAPP trafficking factor coexist inside human cells. FEBS Lett. 582, 3729–3733 (2008).

    Article  Google Scholar 

  31. Koumandou, V. L., Dacks, J. B., Coulson, R. M. & Field, M. C. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol. Biol. 7, 29 (2007).

    Article  Google Scholar 

  32. Lynch-Day, M. A. et al. Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc. Natl Acad. Sci. USA 107, 7811–7816 (2010).

    Article  CAS  Google Scholar 

  33. Cai, Y. et al. The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes. Cell 133, 1202–1213 (2008).

    Article  CAS  Google Scholar 

  34. Kim, Y. G. et al. The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering. Cell 127, 817–830 (2006).

    Article  CAS  Google Scholar 

  35. Morozova, N. et al. TRAPPII subunits are required for the specificity switch of a Ypt-Rab GEF. Nature Cell Biol. 8, 1263–1269 (2006).

    Article  CAS  Google Scholar 

  36. Robinett, C. C., Giansanti, M. G., Gatti, M. & Fuller, M. T. TRAPPII is required for cleavage furrow ingression and localization of Rab11 in dividing male meiotic cells of Drosophila. J. Cell Sci. 122, 4526–4534 (2009).

    Article  CAS  Google Scholar 

  37. Wang, W. & Ferro-Novick, S. A Ypt32p exchange factor is a putative effector of Ypt1p. Mol. Biol. Cell 13, 3336–3343 (2002).

    Article  CAS  Google Scholar 

  38. Yip, C. K., Berscheminski, J. & Walz, T. Molecular architecture of the TRAPPII complex and implications for vesicle tethering. Nature Struct. Mol. Biol. (in the press).

  39. Segev, N., Mulholland, J. & Botstein, D. The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell 52, 915–924 (1988).

    Article  CAS  Google Scholar 

  40. Sclafani, A. et al. Establishing a role for the GTPase Ypt1p at the late Golgi. Traffic 11, 520–532 (2010).

    Article  CAS  Google Scholar 

  41. Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Rev. Mol. Cell Biol. 10, 458–467 (2009).

    Article  CAS  Google Scholar 

  42. Hamasaki, M. & Yoshimori, T. Where do they come from? Insights into autophagosome formation. FEBS Lett. 584, 1296–1301 (2010).

    Article  CAS  Google Scholar 

  43. Meiling-Wesse, K. et al. Trs85 (Gsg1), a component of the TRAPP complexes, is required for the organization of the preautophagosomal structure during selective autophagy via the Cvt pathway. J. Biol. Chem. 280, 33669–33678 (2005).

    Article  CAS  Google Scholar 

  44. Nazarko, T. Y., Huang, J., Nicaud, J. M., Klionsky, D. J. & Sibirny, A. A. Trs85 is required for macroautophagy, pexophagy and cytoplasm to vacuole targeting in Yarrowia lipolytica and Saccharomyces cerevisiae. Autophagy 1, 37–45 (2005).

    Article  CAS  Google Scholar 

  45. Behrends, C., Sowa, M. E., Gygi, S. P. & Harper, J. W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).

    Article  CAS  Google Scholar 

  46. Yen, W. L. et al. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J. Cell Biol. 188, 101–114 (2010).

    Article  CAS  Google Scholar 

  47. Cao, X., Ballew, N. & Barlowe, C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J. 17, 2156–2165 (1998).

    Article  CAS  Google Scholar 

  48. Yamakawa, H., Seog, D. H., Yoda, K., Yamasaki, M. & Wakabayashi, T. Uso1 protein is a dimer with two globular heads and a long coiled-coil tail. J. Struct. Biol. 116, 356–365 (1996).

    Article  CAS  Google Scholar 

  49. Hughson, F. M. & Reinisch, K. M. Structure and mechanism in membrane trafficking. Curr. Opin. Cell Biol. 22, 454–460 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Salary support for J.B. is provided by US National Institutes of Health (NIH) grant R01 GM41223. Salary support for S.F.-N., and D.B. is provided by the Howard Hughes Medical Institute. Salary support for K.R. is provided by NIH grant R01 GM80616.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Ferro-Novick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Susan Ferro-Novick's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrowman, J., Bhandari, D., Reinisch, K. et al. TRAPP complexes in membrane traffic: convergence through a common Rab. Nat Rev Mol Cell Biol 11, 759–763 (2010). https://doi.org/10.1038/nrm2999

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2999

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing