Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The unfolded protein response: controlling cell fate decisions under ER stress and beyond

Key Points

  • Alterations in the function of the endoplasmic reticulum (ER) can result in the accumulation of unfolded or misfolded proteins, a cellular condition referred to as ER stress. ER stress engages the unfolded protein response (UPR), an adaptive reaction that reduces unfolded protein load to maintain cell viability and function.

  • Conditions of chronic or irreversible ER stress trigger cell death by apoptosis, a process that involves the activation of the canonical mitochondrial pathway, which is controlled by the B cell lymphoma 2 (BCL-2) protein family. Chronic ER stress has been linked to the occurrence of many diseases, including cancer, neurodegeneration, ischaemia and diabetes.

  • The UPR is a complex signal transduction pathway that is initiated by the activation of at least three UPR stress sensors: inositol-requiring protein 1 (IRE1), protein kinase RNA-like ER kinase (PERK) and activating transcription factor 6 (ATF6). These sensors controls adaptive process through both transcriptional and non-transcriptional responses, affecting almost every aspect of the secretory pathway, including protein folding, ER biogenesis, ER-associated degradation (ERAD), protein entry to the ER, autophagy and secretion, among others.

  • UPR signalling has distinct kinetics, intensities and downstream consequences depending on the nature and intensity of the stimuli and the cell type involved. These effects may be explained by the modulation of UPR stress sensor activity through interactions with several modulators and adaptor proteins, which possibly results in the assembly of dynamic signalling platforms that have been referred to as 'UPRosomes'.

  • Recent advances in the UPR field indicate that this pathway has important functions in many physiological processes that are not directly related to protein folding. For example, UPR signalling modules crosstalk with signalling pathways that are key in the control of lipid and energy metabolism, innate immunity and cell differentiation programmes.

Abstract

Protein-folding stress at the endoplasmic reticulum (ER) is a salient feature of specialized secretory cells and is also involved in the pathogenesis of many human diseases. ER stress is buffered by the activation of the unfolded protein response (UPR), a homeostatic signalling network that orchestrates the recovery of ER function, and failure to adapt to ER stress results in apoptosis. Progress in the field has provided insight into the regulatory mechanisms and signalling crosstalk of the three branches of the UPR, which are initiated by the stress sensors protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α) and activating transcription factor 6 (ATF6). In addition, novel physiological outcomes of the UPR that are not directly related to protein-folding stress, such as innate immunity, metabolism and cell differentiation, have been revealed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The UPR.
Figure 2: Cell fate decisions under ER stress.
Figure 3: The stress-sensing mechanism and kinetics of IRE1 signalling.
Figure 4: Multiple checkpoints in the regulation of the UPR.
Figure 5: Novel physiological outcomes of the UPR.

Similar content being viewed by others

References

  1. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Rev. Mol. Cell Biol. 8, 519–529 (2007).

    Article  CAS  Google Scholar 

  2. Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J. & Sambrook, J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462–464 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. Hetz, C., Martinon, F., Rodriguez, D. & Glimcher, L. H. The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol. Rev. 91, 1219–1243 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Woehlbier, U. & Hetz, C. Modulating stress responses by the UPRosome: a matter of life and death. Trends Biochem. Sci. 36, 329–337 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Rutkowski, D. T. & Hegde, R. S. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J. Cell Biol. 189, 783–794 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Han, D. et al. IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hollien, J. et al. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J. Cell Biol. 186, 323–331 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hollien, J. & Weissman, J. S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kang, S. W. et al. Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell 127, 999–1013 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Oyadomari, S. et al. Cotranslocational degradation protects the stressed endoplasmic reticulum from protein overload. Cell 126, 727–739 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, K. et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16, 452–466 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001). References 15–17 identify XBP1 mRNA as a substrate of IRE1α.

    Article  CAS  PubMed  Google Scholar 

  18. Lee, A. H., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23, 7448–7459 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Acosta-Alvear, D. et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell 27, 53–66 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Asada, R., Kanemoto, S., Kondo, S., Saito, A. & Imaizumi, K. The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J. Biochem. 149, 507–518 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Haze, K., Yoshida, H., Yanagi, H., Yura, T. & Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787–3799 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell 13, 365–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Ameri, K. & Harris, A. L. Activating transcription factor 4. Int. J. Biochem. Cell Biol. 40, 14–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Behrman, S., Acosta-Alvear, D. & Walter, P. A CHOP-regulated microRNA controls rhodopsin expression. J. Cell Biol. 192, 919–927 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Tabas, I. & Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nature Cell Biol. 13, 184–190 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Rev. Mol. Cell Biol. 11, 621–632 (2010).

    Article  CAS  Google Scholar 

  27. Hetz, C. & Glimcher, L. H. Fine-tuning of the unfolded protein response: assembling the IRE1α interactome. Mol. Cell 35, 551–561 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Ogata, M. et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26, 9220–9231 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Nassif, M., Matus, S., Castillo, K. & Hetz, C. Amyotrophic lateral sclerosis pathogenesis: a journey through the secretory pathway. Antioxid. Redox Signal. 13, 1955–1989 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Nakajima, S. et al. Selective abrogation of BiP/GRP78 blunts activation of NF-κB through the ATF6 branch of the UPR: involvement of C/EBPβ and mTOR-dependent dephosphorylation of Akt. Mol. Cell. Biol. 31, 1710–1718 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kimata, Y. & Kohno, K. Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cells. Curr. Opin. Cell Biol. 23, 135–142 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Li, H., Korennykh, A. V., Behrman, S. L. & Walter, P. Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering. Proc. Natl Acad. Sci. USA 107, 16113–16118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Korennykh, A. V. et al. The unfolded protein response signals through high-order assembly of Ire1. Nature 457, 687–693 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biol. 2, 326–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Shen, J., Chen, X., Hendershot, L. & Prywes, R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3, 99–111 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Schindler, A. J. & Schekman, R. In vitro reconstitution of ER-stress induced ATF6 transport in COPII vesicles. Proc. Natl Acad. Sci. USA 106, 17775–17780 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hong, M. et al. Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response. J. Biol. Chem. 279, 11354–11363 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Nadanaka, S., Okada, T., Yoshida, H. & Mori, K. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol. Cell. Biol. 27, 1027–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Credle, J. J., Finer-Moore, J. S., Papa, F. R., Stroud, R. M. & Walter, P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 102, 18773–18784 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Gardner, B. M. & Walter, P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333, 1891–1894 (2011). References 41 and 42 depict a direct model for unfolded protein recognition by Ire1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Oikawa, D., Kimata, Y., Kohno, K. & Iwawaki, T. Activation of mammalian IRE1α upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins. Exp. Cell Res. 315, 2496–2504 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Zhou, J. et al. The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proc. Natl Acad. Sci. USA 103, 14343–14348 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yoshida, H. et al. A time-dependent phase shift in the mammalian unfolded protein response. Dev. Cell 4, 265–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. DuRose, J. B., Tam, A. B. & Niwa, M. Intrinsic capacities of molecular sensors of the unfolded protein response to sense alternate forms of endoplasmic reticulum stress. Mol. Biol. Cell 17, 3095–3107 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Maiuolo, J., Bulotta, S., Verderio, C., Benfante, R. & Borgese, N. Selective activation of the transcription factor ATF6 mediates endoplasmic reticulum proliferation triggered by a membrane protein. Proc. Natl Acad. Sci. USA 108, 7832–7837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, A. H., Heidtman, K., Hotamisligil, G. S. & Glimcher, L. H. Dual and opposing roles of the unfolded protein response regulated by IRE1α and XBP1 in proinsulin processing and insulin secretion. Proc. Natl Acad. Sci. USA 108, 8885–8890 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lipson, K. L., Ghosh, R. & Urano, F. The role of IRE1α in the degradation of insulin mRNA in pancreatic β-cells. PLoS ONE 3, e1648 (2008).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Iqbal, J. et al. IRE1β inhibits chylomicron production by selectively degrading MTP mRNA. Cell Metab. 7, 445–455 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Liu, C. Y., Schroder, M. & Kaufman, R. J. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J. Biol. Chem. 275, 24881–24885 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Lin, J. H. et al. IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944–949 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Lin, J. H., Li, H., Zhang, Y., Ron, D. & Walter, P. Divergent effects of PERK and IRE1 signaling on cell viability. PLoS ONE 4, e4170 (2009).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Pincus, D. et al. BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol. 8, e1000415 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Rubio, C. et al. Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity. J. Cell Biol. 193, 171–184 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Chawla, A., Chakrabarti, S., Ghosh, G. & Niwa, M. Attenuation of yeast UPR is essential for survival and is mediated by IRE1 kinase. J. Cell Biol. 193, 41–50 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Rutkowski, D. T. et al. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol. 4, e374 (2006).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Hetz, C. et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α. Science 312, 572–576 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Gupta, S. et al. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1α–XBP1 signaling through a physical interaction. PLoS Biol. 8, e1000410 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Gu, F. et al. Protein-tyrosine phosphatase 1B potentiates IRE1 signaling during endoplasmic reticulum stress. J. Biol. Chem. 279, 49689–49693 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Luo, D. et al. AIP1 is critical in transducing IRE1-mediated endoplasmic reticulum stress response. J. Biol. Chem. 283, 11905–11912 (2008). References 57, 58 and 60 give the first examples of specific IRE1α cofactors that tune UPR signalling.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Yoneda, T. et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276, 13935–13940 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Oono, K. et al. JAB1 participates in unfolded protein responses by association and dissociation with IRE1. Neurochem. Int. 45, 765–772 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Lisbona, F. et al. BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1α. Mol. Cell 33, 679–691 (2009). References 52, 54, 55 and 63 provide insights into the attenuation of IRE1 signalling.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Bailly-Maitre, B. et al. Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 103, 2809–2814 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bailly-Maitre, B. et al. Hepatic Bax inhibitor-1 inhibits IRE1α and protects from obesity-associated insulin resistance and glucose intolerance. J. Biol. Chem. 285, 6198–6207 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Rong, J. et al. BAR, an endoplasmic reticulum-associated E3 ubiquitin ligase, modulates BI-1 protein stability and function in ER stress. J. Biol. Chem. 286, 1453–1463 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Kato, H. et al. mTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1-JNK pathway. Cell Death Differ. 22 Jul 2011 (doi: 10.1038/cdd.2011.98).

    Article  CAS  Google Scholar 

  68. Wiseman, R. L. et al. Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1. Mol. Cell 38, 291–304.

  69. Korennykh, A. V. et al. Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1. BMC Biol. 9, 48 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Ishiwata-Kimata, Y. et al. Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum-stress sensor Ire1 by different manners. Mol. Biol. Cell 22, 3520–3532 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  71. Bouchecareilh, M., Higa, A., Fribourg, S., Moenner, M. & Chevet, E. Peptides derived from the bifunctional kinase/RNase enzyme IRE1α modulate IRE1α activity and protect cells from endoplasmic reticulum stress. FASEB J. 25, 3115–3129 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. van Huizen, R., Martindale, J. L., Gorospe, M. & Holbrook, N. J. P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2α signaling. J. Biol. Chem. 278, 15558–15564 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Yan, W. et al. Control of PERK eIF2α kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc. Natl Acad. Sci. USA 99, 15920–15925 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ni, M., Zhou, H., Wey, S., Baumeister, P. & Lee, A. S. Regulation of PERK signaling and leukemic cell survival by a novel cytosolic isoform of the UPR regulator GRP78/BiP. PLoS ONE 4, e6868 (2009).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Bollo, M. et al. Calcineurin interacts with PERK and dephosphorylates calnexin to relieve ER stress in mammals and frogs. PLoS ONE 5, e11925 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Fonseca, S. G. et al. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J. Clin. Invest. 120, 744–755 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Yoshida, H. et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 20, 6755–6767 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Luo, R., Lu, J. F., Hu, Q. & Maity, S. N. CBF/NF-Y controls endoplasmic reticulum stress induced transcription through recruitment of both ATF6(N) and TBP. J. Cell Biochem. 104, 1708–1723 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Li, M. et al. ATF6 as a transcription activator of the endoplasmic reticulum stress element: thapsigargin stress-induced changes and synergistic interactions with NF-Y and YY1. Mol. Cell. Biol. 20, 5096–5106 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Sato, Y., Nadanaka, S., Okada, T., Okawa, K. & Mori, K. Luminal domain of ATF6 alone is sufficient for sensing endoplasmic reticulum stress and subsequent transport to the Golgi apparatus. Cell Struct. Funct. 36, 35–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Yanagitani, K. et al. Cotranslational targeting of XBP1 protein to the membrane promotes cytoplasmic splicing of its own mRNA. Mol. Cell 34, 191–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Yanagitani, K., Kimata, Y., Kadokura, H. & Kohno, K. Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA. Science 331, 586–589 (2011). References 81 and 82 report a mechanism for targeting XBP1 mRNA to IRE1α for splicing.

    Article  CAS  PubMed  Google Scholar 

  83. Park, S. W. et al. The regulatory subunits of PI3K, p85α and p85β, interact with XBP-1 and increase its nuclear translocation. Nature Med. 16, 429–437 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Winnay, J. N., Boucher, J., Mori, M. A., Ueki, K. & Kahn, C. R. A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding protein-1 to modulate the unfolded protein response. Nature Med. 16, 438–445 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Lee, J. et al. p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. Nature Med. 17, 1251–1260 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, F. M. & Ouyang, H. J. Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation. Biochem. J. 433, 245–252 (2010).

    Article  CAS  Google Scholar 

  87. Chen, H. & Qi, L. SUMO modification regulates the transcriptional activity of XBP1. Biochem. J. 429, 95–102 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Yoshida, H., Oku, M., Suzuki, M. & Mori, K. pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J. Cell Biol. 172, 565–575 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Novoa, I., Zeng, H., Harding, H. P. & Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 153, 1011–1022 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Boyce, M. et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Tsaytler, P., Harding, H. P., Ron, D. & Bertolotti, A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332, 91–94 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Teske, B. F. et al. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol. Biol. Cell 22, 4390–4405 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Martinon, F. & Glimcher, L. H. Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum. Curr. Opin. Immunol. 23, 35–40 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Martinon, F., Chen, X., Lee, A.-H. & Glimcher, L. H. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nature Immunol. 11, 411–418 (2010).

    Article  CAS  Google Scholar 

  95. Woo, C. W. et al. Adaptive suppression of the ATF4–CHOP branch of the unfolded protein response by toll-like receptor signalling. Nature Cell Biol. 11, 1473–1480 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Lipson, K. L. et al. Regulation of insulin biosynthesis in pancreatic β cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab. 4, 245–254 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Qiu, Y. et al. A crucial role for RACK1 in the regulation of glucose-stimulated IRE1α activation in pancreatic β cells. Sci. Signal. 3, ra7 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    Article  PubMed  CAS  Google Scholar 

  100. Fu, S. et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473, 528–531 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Reimold, A. M. et al. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14, 152–157 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Iwakoshi, N. N. et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nature Immunol. 4, 321–329 (2003).

    Article  CAS  Google Scholar 

  103. Lee, A. H., Chu, G. C., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J. 24, 4368–4380 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Iwawaki, T., Akai, R. & Kohno, K. IRE1α disruption causes histological abnormality of exocrine tissues, increase of blood glucose level, and decrease of serum immunoglobulin level. PLoS ONE 5, e13052 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Huh, W. J. et al. XBP1 controls maturation of gastric zymogenic cells by induction of MIST1 and expansion of the rough endoplasmic reticulum. Gastroenterology 139, 2038–2049 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Harding, H. P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153–1163 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Hu, C., Dougan, S., McGehee, A., Love, J. & Ploegh, H. XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells. EMBO J. (2009).

  108. Zhang, K. et al. The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis. J. Clin. Invest. 115, 268–281 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Tsang, K. Y. et al. Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function. PLoS Biol. 5, e44 (2007).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Lee, A.-H., Scapa, E., Cohen, D. & Glimcher, L. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320, 1492–1496 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Yamamoto, K. et al. Induction of liver steatosis and lipid droplet formation in ATF6α-knockout mice burdened with pharmacological endoplasmic reticulum stress. Mol. Biol. Cell 21, 2975–2986 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Zhang, K. et al. The unfolded protein response transducer IRE1α prevents ER stress-induced hepatic steatosis. EMBO J. 30, 1357–1375 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Vecchi, C. et al. ER stress controls iron metabolism through induction of hepcidin. Science 325, 877–880 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Zhou, Y. et al. Regulation of glucose homeostasis through a XBP-1–FoxO1 interaction. Nature Med. 17, 356–365 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Henis-Korenblit, S. et al. Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity. Proc. Natl Acad. Sci. USA 107, 9730–9735 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, Y., Vera, L., Fischer, W. H. & Montminy, M. The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature 460, 534–537 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Hayashi, A. et al. The role of brain-derived neurotrophic factor (BDNF)-induced XBP1 splicing during brain development. J. Biol. Chem. 282, 34525–34534 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Bommiasamy, H. & Popko, B. Animal models in the study of the unfolded protein response. Meth. Enzymol. 491, 91–109 (2011).

    Article  CAS  Google Scholar 

  119. Hetz, C. & Glimcher, L. H. Protein homeostasis networks in physiology and disease. Curr. Opin. Cell Biol. 23, 123–125 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001). Provides one of the first clues to the physiological function of the mammalian UPR.

    Article  CAS  PubMed  Google Scholar 

  121. Iwawaki, T., Akai, R., Yamanaka, S. & Kohno, K. Function of IRE1α in the placenta is essential for placental development and embryonic viability. Proc. Natl Acad. Sci. USA 106, 16657–16662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gass, J. N., Jiang, H. Y., Wek, R. C. & Brewer, J. W. The unfolded protein response of B-lymphocytes: PERK-independent development of antibody-secreting cells. Mol. Immunol. 45, 1035–1043 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Yang, X. et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin–Lowry syndrome. Cell 117, 387–398 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Tanaka, T. et al. Targeted disruption of ATF4 discloses its essential role in the formation of eye lens fibres. Genes Cells 3, 801–810 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Matus, S., Glimcher, L. H. & Hetz, C. Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr. Opin. Cell Biol. 23, 239–252 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Saxena, S., Cabuy, E. & Caroni, P. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nature Neurosci. 12, 627–636 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Wang, L., Popko, B. & Roos, R. P. The unfolded protein response in familial amyotrophic lateral sclerosis. Hum. Mol. Genet. 20, 1008–1015 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Hetz, C. et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 23, 2294–2306 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Hetz, C. et al. The proapoptotic BCL-2 family member BIM mediates motoneuron loss in a model of amyotrophic lateral sclerosis. Cell Death Differ. 14, 1386–1389 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Nishitoh, H. et al. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev. 22, 1451–1464 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to all colleagues whose work could not be cited owing to space limitations. I thank A. Couve, U. Woehlbier and A. Glavic for constructive comments, C. Wirth for editing and D. Rodriguez for input into the initial figure design. This work was supported by Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT), Chile, grant 1100176, Fondo de Investigación Avanzado en Areas Prioritarias (FONDAP), Chile, grant 15010006, Millennium Institute grant P09-015-F the Muscular Dystrophy Association, the Michael J. Fox Foundation for Parkinson Research, the Alzheimer's Association and the North American Spine Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Hetz.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Claudio Hetz's homepage

Glossary

RIDD

(Regulated IRE1-dependent decay). The degradation of a subset of mRNAs encoding for proteins located in the endoplasmic reticulum, possibly through the activation of the RNase domain of inositol-requiring 1 (IRE1).

ERAD

(Endoplasmic reticulum-associated degradation). A pathway along which misfolded proteins are transported from the ER to the cytosol for proteasomal degradation.

Autophagy

A survival pathway that is classically linked to the adaptation to nutrient starvation through the recycling of cytosolic components by lysosome-mediated degradation. In cells undergoing endoplasmic reticulum stress, autophagy may serve as a mechanism to eliminate damaged organelles and aggregated proteins.

Pancreatic β-cells

Cells in the pancreas that make and secrete insulin to respond to glucose fluctuations.

UPRosome

A signalling platform assembled at the level of inositol-requiring protein 1α that controls the kinetics and amplitude of downstream unfolded protein response (UPR) signalling responses. The UPRosome also orchestrates crosstalk between the UPR and other signalling pathways through the recruitment of different adaptor proteins.

Exocrine pancreas

A type of pancreatic tissue that has ducts arranged in clusters called acini. Cells secrete into the lumen of an acinus a series of enzymes and molecules related to digestion, including trypsinogen, lipase, amylase and ribonuclease.

Endocrine pancreas

The part of the pancreas that acts as an endocrine gland, consisting of the islets of Langerhans, which contain β-cells. Theses cells secrete insulin and other hormones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13, 89–102 (2012). https://doi.org/10.1038/nrm3270

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3270

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing