Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The return of the nucleus: transcriptional and epigenetic control of autophagy

Abstract

Autophagy is a conserved process by which cytoplasmic components are degraded by the lysosome. It is commonly seen as a cytoplasmic event and, until now, nuclear events were not considered of primary importance for this process. However, recent studies have unveiled a transcriptional and epigenetic network that regulates autophagy. The identification of tightly controlled transcription factors (such as TFEB and ZKSCAN3), microRNAs and histone marks (especially acetylated Lys16 of histone 4 (H4K16ac) and dimethylated H3K9 (H3K9me2)) associated with the autophagic process offers an attractive conceptual framework to understand the short-term transcriptional response and potential long-term responses to autophagy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Autophagy regulates the biogenesis of miRNAs, which in turn control the expression of core autophagy proteins.
Figure 2: Histone post-translational modifications contribute to the control of autophagy flux.

Similar content being viewed by others

References

  1. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, Y. & Klionsky, D. J. The regulation of autophagy — unanswered questions. J. Cell Sci. 124, 161–170 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Morselli, E. et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 192, 615–629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shigemitsu, K. et al. Regulation of translational effectors by amino acid and mammalian target of rapamycin signaling pathways. Possible involvement of autophagy in cultured hepatoma cells. J. Biol. Chem. 274, 1058–1065 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, Z. & Klionsky, D. J. Eaten alive: a history of macroautophagy. Nature Cell Biol. 12, 814–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Funasaka, T., Tsuka, E. & Wong, R. W. Regulation of autophagy by nucleoporin Tpr. Scientif. Rep. 2, 878 (2012).

    Article  CAS  Google Scholar 

  9. Drake, K. R., Kang, M. & Kenworthy, A. K. Nucleocytoplasmic distribution and dynamics of the autophagosome marker EGFP–LC3. PLoS ONE 5, e9806 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Liang, X. H., Yu, J., Brown, K. & Levine, B. Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res. 61, 3443–3449 (2001).

    CAS  PubMed  Google Scholar 

  11. Beck, T. & Hall, M. N. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689–692 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Bertram, P. G. et al. Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J. Biol. Chem. 275, 35727–35733 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Hardwick, J. S., Kuruvilla, F. G., Tong, J. K., Shamji, A. F. & Schreiber, S. L. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc. Natl Acad. Sci. USA 96, 4866–14870 (1999).

    Article  Google Scholar 

  14. Cardenas, M. E., Cutler, N. S., Lorenz, M. C., Di Como, C. J. & Heitman, J. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 13, 3271–3279 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chan, T. F., Bertram, P. G., Ai, W. & Zheng, X. F. Regulation of APG14 expression by the GATA-type transcription factor Gln3p. J. Biol. Chem. 276, 6463–6467 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Sengupta, A., Molkentin, J. D. & Yutzey, K. E. FoxO transcription factors promote autophagy in cardiomyocytes. J. Biol. Chem. 284, 28319–28331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell. Metab. 6, 458–471 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, P., Das, M., Reilly, J. & Davis, R. J. JNK regulates FoxO-dependent autophagy in neurons. Genes Dev. 25, 310–322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Warr, M. R. et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494, 323–327 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao, J. et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell. Metab. 6, 472–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Mammucari, C., Schiaffino, S. & Sandri, M. Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle. Autophagy 4, 524–526 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, J. et al. FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway. Autophagy 8, 1712–1723 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, H. Y. et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J. Biol. Chem. 284, 31484–31492 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hariharan, N. et al. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ. Res. 107, 1470–1482 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao, Y. et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nature Cell Biol. 12, 665–675 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Medema, R. H. & Jaattela, M. Cytosolic FoxO1: alive and killing. Nature Cell Biol. 12, 642–643 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Vidal, R. L. & Hetz, C. Unspliced XBP1 controls autophagy through FoxO1. Cell Res. 23, 463–464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, Y. et al. XBP-1u suppresses autophagy by promoting the degradation of FoxO1 in cancer cells. Cell Res. 23, 491–507 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Polager, S., Ofir, M. & Ginsberg, D. E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 27, 4860–4864 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Tracy, K. et al. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol. Cell. Biol. 27, 6229–6242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gang, H. et al. Epigenetic regulation of E2F-1-dependent Bnip3 transcription and cell death by nuclear factor-κB and histone deacetylase-1. Pediatr. Cardiol. 32, 263–266 (2011).

    Article  PubMed  Google Scholar 

  32. Polager, S. & Ginsberg, D. E2F — at the crossroads of life and death. Trends Cell Biol. 18, 528–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Polager, S. & Ginsberg, D. p53 and E2f: partners in life and death. Nature Rev. Cancer 9, 738–748 (2009).

    Article  CAS  Google Scholar 

  34. Shaw, J. et al. Antagonism of E2F-1 regulated Bnip3 transcription by NF-κB is essential for basal cell survival. Proc. Natl Acad. Sci. USA 105, 20734–20739 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chung, K. W. et al. Recent advances in calorie restriction research on aging. Exp. Gerontol. 48, 1049–1053 (2012).

    Article  PubMed  Google Scholar 

  36. Feng, Z., Zhang, H., Levine, A. J. & Jin, S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl Acad. Sci. USA 102, 8204–8209 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Tasdemir, E. et al. Regulation of autophagy by cytoplasmic p53. Nature Cell Biol. 10, 676–687 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Green, D. R. & Kroemer, G. Cytoplasmic functions of the tumour suppressor p53. Nature 458, 1127–1130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scherz-Shouval, R. et al. p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc. Natl Acad. Sci. USA 107, 18511–18516 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pietrocola, F. et al. Regulation of autophagy by stress-responsive transcription factors. Seminars Cancer Biol. 23, 310–322 (2013).

    Article  CAS  Google Scholar 

  42. Kenzelmann Broz, D. et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 27, 1016–1031 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Rosenbluth, J. M. & Pietenpol, J. A. mTOR regulates autophagy-associated genes downstream of p73. Autophagy 5, 114–116 (2009).

    CAS  PubMed  Google Scholar 

  44. Huang, Y., Guerrero-Preston, R. & Ratovitski, E. A. Phospho-ΔNp63α-dependent regulation of autophagic signaling through transcription and micro-RNA modulation. Cell Cycle 11, 1247–1259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xie, Z., Nair, U. & Klionsky, D. J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19, 3290–3298 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Williams, R. M. et al. The Ume6 regulon coordinates metabolic and meiotic gene expression in yeast. Proc. Natl Acad. Sci. USA 99, 13431–13436 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bartholomew, C. R. et al. Ume6 transcription factor is part of a signaling cascade that regulates autophagy. Proc. Natl Acad. Sci. USA 109, 11206–11210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nature Cell Biol. 15, 647–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Settembre, C., Fraldi, A., Medina, D. L. & Ballabio, A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nature Rev. Mol. Cell Biol. 14, 283–296 (2013).

    Article  CAS  Google Scholar 

  51. Chauhan, S. et al. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell 50, 16–28 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moresi, V. et al. Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice. Proc. Natl Acad. Sci. USA 109, 1649–1654 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gammoh, N. et al. Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc. Natl Acad. Sci. USA 109, 6561–6565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cao, D. J. et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc. Natl Acad. Sci. USA 108, 4123–4128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kazantsev, A. G. & Thompson, L. M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nature Rev. Drug Discov. 7, 854–868 (2008).

    Article  CAS  Google Scholar 

  56. Minucci, S. & Pelicci, P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Rev. Cancer 6, 38–51 (2006).

    Article  CAS  Google Scholar 

  57. Kawaguchi, Y. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727–738 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, J. Y. et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29, 969–980 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oh, M., Choi, I. K. & Kwon, H. J. Inhibition of histone deacetylase1 induces autophagy. Biochem. Biophys. Res. Commun. 369, 1179–1183 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Xie, H. J. et al. HDAC1 inactivation induces mitotic defect and caspase-independent autophagic cell death in liver cancer. PLoS ONE 7, e34265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee, I. H. et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl Acad. Sci. USA 105, 3374–3379 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee, I. H. & Finkel, T. Regulation of autophagy by the p300 acetyltransferase. J. Biol. Chem. 284, 6322–6328 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin, S. Y. et al. GSK3–TIP60–ULK1 signaling pathway links growth factor deprivation to autophagy. Science 336, 477–481 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Yi, C. et al. Function and molecular mechanism of acetylation in autophagy regulation. Science 336, 474–477 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Fullgrabe, J. et al. The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature 500, 468–471 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Rohde, J. R. & Cardenas, M. E. The tor pathway regulates gene expression by linking nutrient sensing to histone acetylation. Mol. Cell. Biol. 23, 629–635 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, H., Fan, M., Pfeffer, L. M. & Laribee, R. N. The histone H3 lysine 56 acetylation pathway is regulated by target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis. Nucleic Acids Res. 40, 6534–6546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nature Cell Biol. 11, 1305–1314 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Juengel, E. et al. Acetylation of histone H3 prevents resistance development caused by chronic mTOR inhibition in renal cell carcinoma cells. Cancer Lett. 324, 83–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Artal-Martinez de Narvajas, A. et al. Epigenetic regulation of autophagy by the methyltransferase G9a. Mol. Cell. Biol. 33, 3983–3993 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yuan, Y. et al. Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells. Cell Death Dis. 4, e690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873–885 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Katoh, H. et al. FOXP3 orchestrates H4K16 acetylation and H3K4 trimethylation for activation of multiple genes by recruiting MOF and causing displacement of PLU-1. Mol. Cell 44, 770–784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ruthenburg, A. J. et al. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 145, 692–706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ghosh, H. S., McBurney, M. & Robbins, P. D. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS ONE 5, e9199 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Bao, J. & Sack, M. N. Protein deacetylation by sirtuins: delineating a post-translational regulatory program responsive to nutrient and redox stressors. Cell. Mol. Life Sci. 67, 3073–3087 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vaquero, A., Sternglanz, R. & Reinberg, D. NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 26, 5505–5520 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Hajji, N. et al. Opposing effects of hMOF and SIRT1 on H4K16 acetylation and the sensitivity to the topoisomerase II inhibitor etoposide. Oncogene 29, 2192–2204 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Kind, J. et al. Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila. Cell 133, 813–828 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Fullgrabe, J., Kavanagh, E. & Joseph, B. Histone onco-modifications. Oncogene 30, 3391–3403 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Kapoor-Vazirani, P., Kagey, J. D., Powell, D. R. & Vertino, P. M. Role of hMOF-dependent histone H4 lysine 16 acetylation in the maintenance of TMS1/ASC gene activity. Cancer Res. 68, 6810–6821 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Katan-Khaykovich, Y. & Struhl, K. Dynamics of global histone acetylation and deacetylation in vivo: rapid restoration of normal histone acetylation status upon removal of activators and repressors. Genes Dev. 16, 743–752 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kourmouli, N. et al. Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J. Cell Sci. 117, 2491–2501 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Kapoor-Vazirani, P., Kagey, J. D. & Vertino, P. M. SUV420H2-mediated H4K20 trimethylation enforces RNA polymerase II promoter-proximal pausing by blocking hMOF-dependent H4K16 acetylation. Mol. Cell. Biol. 31, 1594–1609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. New Engl. J. Med. 368, 651–662 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Levine, B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120, 159–162 (2005).

    CAS  PubMed  Google Scholar 

  87. Greer, E. L. et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365–371 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Decressac, M. et al. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc. Natl Acad. Sci. USA 110, E1817–E1826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tsunemi, T. et al. PGC-1α rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 4, 142ra197 (2012).

    Article  CAS  Google Scholar 

  90. Pastore, N. et al. Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in α-1-anti-trypsin deficiency. EMBO Mol. Med. 5, 397–412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Spampanato, C. et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol. Med. 5, 691–706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Frankel, L. B. & Lund, A. H. MicroRNA regulation of autophagy. Carcinogenesis 33, 2018–2025 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Yu, Y. et al. microRNA 30A promotes autophagy in response to cancer therapy. Autophagy 8, 853–855 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gibbings, D. et al. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nature Cell Biol. 14, 1314–1321 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Kovaleva, V. et al. miRNA-130a targets ATG2B and DICER1 to inhibit autophagy and trigger killing of chronic lymphocytic leukemia cells. Cancer Res. 72, 1763–1772 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Suh, E. J. et al. A microRNA network regulates proliferative timing and extracellular matrix synthesis during cellular quiescence in fibroblasts. Genome Biol. 13, R121 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Totary-Jain, H. et al. Reprogramming of the microRNA transcriptome mediates resistance to rapamycin. J. Biol. Chem. 288, 6034–6044 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fullgrabe, J., Hajji, N. & Joseph, B. Cracking the death code: apoptosis-related histone modifications. Cell Death Differ. 17, 1238–1243 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Rouschop, K. M. et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Invest. 120, 127–141 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Milani, M. et al. The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib. Cancer Res. 69, 4415–4423 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Pike, L. R. et al. Transcriptional up-regulation of ULK1 by ATF4 contributes to cancer cell survival. Biochem. J. 449, 389–400 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Pike, L. R., Phadwal, K., Simon, A. K. & Harris, A. L. ATF4 orchestrates a program of BH3-only protein expression in severe hypoxia. Mol. Biol. Rep. 39, 10811–10822 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Sheng, Z., Ma, L., Sun, J. E., Zhu, L. J. & Green, M. R. BCR-ABL suppresses autophagy through ATF5-mediated regulation of mTOR transcription. Blood 118, 2840–2848 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Petherick, K. J. et al. Autolysosomal β-catenin degradation regulates Wnt–autophagy–p62 crosstalk. EMBO J. 32, 1903–1916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ma, D., Panda, S. & Lin, J. D. Temporal orchestration of circadian autophagy rhythm by C/EBPβ. EMBO J. 30, 4642–4651 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yurkova, N. et al. The cell cycle factor E2F-1 activates Bnip3 and the intrinsic death pathway in ventricular myocytes. Circ. Res. 102, 472–479 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Xiong, X., Tao, R., DePinho, R. A. & Dong, X. C. The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J. Biol. Chem. 287, 39107–39114 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fiorentino, L. et al. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay. EMBO Mol. Med. 5, 441–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sanchez, A. M. et al. AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. J. Cell. Biochem. 113, 695–710 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Schips, T. G. et al. FoxO3 induces reversible cardiac atrophy and autophagy in a transgenic mouse model. Cardiovasc. Res. 91, 587–597 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Kang, Y. A. et al. Autophagy driven by a master regulator of hematopoiesis. Mol. Cell. Biol. 32, 226–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, H. et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892–10903 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bellot, G. et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol. 29, 2570–2581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sun, T. et al. c-Jun NH2-terminal kinase activation is essential for up-regulation of LC3 during ceramide-induced autophagy in human nasopharyngeal carcinoma cells. J. Transl. Med. 9, 161 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jia, G., Cheng, G., Gangahar, D. M. & Agrawal, D. K. Insulin-like growth factor-1 and TNF-α regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol. Cell Biol. 84, 448–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Li, D. D. et al. The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene 28, 886–898 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Copetti, T. Bertoli, C., Dalla, E., Demarchi, F. & Schneider, C. p65/RelA modulates BECN1 transcription and autophagy. Mol. Cell. Biol. 29, 2594–2608 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tamatani, M. et al. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFκB activation in primary hippocampal neurons. J. Biol. Chem. 274, 8531–8538 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Ling, J. et al. KrasG12D-induced IKK2/β/NF-κB activation by IL-1α and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 21, 105–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yee, K. S., Wilkinson, S., James, J., Ryan, K. M. & Vousden, K. H. PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ. 16, 1135–1145 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Cho, Y. Y. et al. Autophagy and cellular senescence mediated by Sox2 suppress malignancy of cancer cells. PLoS ONE 8, e57172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Seo, Y. K. et al. Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy. Cell. Metab. 13, 367–375 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. McCormick, J. et al. STAT1 deficiency in the heart protects against myocardial infarction by enhancing autophagy. J. Cell. Mol. Med. 16, 386–393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dauer, D. J. et al. Stat3 regulates genes common to both wound healing and cancer. Oncogene 24, 3397–3408 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Lipinski, M. M. et al. A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions. Dev. Cell 18, 1041–1052 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bryant, A. et al. miR-10a is aberrantly overexpressed in Nucleophosmin1 mutated acute myeloid leukaemia and its suppression induces cell death. Mol. Cancer 11, 8 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wu, H. et al. MiR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts. Cell Signal. 24, 2179–2186 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Huang, Y., Chuang, A. Y. & Ratovitski, E. A. Phospho-ΔNp63α/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure. Cell Cycle 10, 3938–3947 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yang, J. et al. MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age (Dordr.) 35, 11–22 (2013).

    Article  CAS  Google Scholar 

  130. Shi, G. et al. Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia 61, 504–512 (2013).

    Article  PubMed  Google Scholar 

  131. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA 102, 13944–13949 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Si, M. L. et al. miR-21-mediated tumor growth. Oncogene 26, 2799–2803 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Singh, R. & Saini, N. Downregulation of BCL2 by miRNAs augments drug-induced apoptosis — a combined computational and experimental approach. J. Cell Sci. 125, 1568–1578 (2012).

    CAS  PubMed  Google Scholar 

  134. Abe, W. et al. miR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells. Hum. Reprod. 28, 750–761 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Ryan, J. et al. MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome. Br. J. Cancer 107, 967–976 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Verdoodt, B. et al. MicroRNA-205, a novel regulator of the anti-apoptotic protein Bcl2, is downregulated in prostate cancer. Int. J. Oncol. 43, 307–314 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Zhu, H. et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 5, 816–823 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yang, X. et al. mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells. Biochem. Biophys. Res. Commun. 431, 617–622 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Korkmaz, G., le Sage, C., Tekirdag, K. A., Agami, R. & Gozuacik, D. miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy 8, 165–176 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Frankel, L. B. et al. microRNA-101 is a potent inhibitor of autophagy. EMBO J. 30, 4628–4641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yu, Y. et al. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia 26, 1752–1760 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Comincini, S. et al. microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol. Ther. 14, 574–586 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chang, Y. et al. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology 143, 177–187 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Li, R. et al. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H2O2)-induced apoptosis through targeting the mitochondria apoptotic pathway. PLoS ONE 7, e44907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang, F. et al. miR-210 suppresses BNIP3 to protect against the apoptosis of neural progenitor cells. Stem Cell Res. 11, 657–667 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Mikhaylova, O. et al. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 21, 532–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Meenhuis, A. et al. MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood 118, 916–925 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.F. is supported by a fellowship from the Karolinska Institute Foundation. Work in the author laboratory was supported by a US National Institute of Health (NIH) grant GM53396 (to D.J.K.), the Swedish Cancer Society, the Swedish Childhood Cancer Foundation and the Swedish Research Council (to B.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Joseph.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

ClinicalTrials.gov

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Füllgrabe, J., Klionsky, D. & Joseph, B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol 15, 65–74 (2014). https://doi.org/10.1038/nrm3716

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3716

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing