Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Matrix metalloproteinases: a tail of a frog that became a prince

Abstract

It is 40 years since the first member of what came to be known as the matrix metalloproteinase (MMP) family was described. Structural, molecular and biochemical approaches have subsequently contributed to piecing together the puzzle of how MMPs work, and how they contribute to various disease processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Degradation of interstitial collagen by collagenase.
Figure 2: The matrix metalloproteinase (MMP) family.
Figure 3: Degradation of collagen by the tadpole tail.
Figure 4: Proteolytic cascades in MMP activation.
Figure 5: Structure of proMMP-2.

References

  1. Gross, J. & Lapiere, C. M. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc. Natl Acad. Sci. USA 48, 1014–1022 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Woessner, J. F. & Nagase, H. Matrix Metalloproteinases and TIMPs (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  3. Barrett, A. J., Rawlings, N. D. & Woessner, J. F. Jr. Hand-book of Proteolytic Enzymes (Academic, London, 1998).

    Google Scholar 

  4. Matrix Metalloproteinase Protocols (ed. Clark, I. M.); Methods in Molecular Biology (ed. Walker, J. M.) Vol. 151. (Humana, New Jersey, 2001).

  5. McCawley, L. J. & Matrisian, L. M. Matrix metalloproteinases: they're not just for matrix anymore! Curr. Opin. Cell Biol. 13, 534–540 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Nagase, H., Barrett, A. J. & Woessner, J. F. Jr. Nomenclature and glossary of the matrix metallo-proteinases. Matrix Suppl. 1, 421–424 (1992).

    CAS  PubMed  Google Scholar 

  7. Bauer, E. A., Eisen, A. Z. & Jeffrey, J. J. Immunologic relationship of a purified human skin collagenase to other human and animal collagenases. Biochim. Biophys. Acta 206, 152–160 (1970).

    Article  CAS  PubMed  Google Scholar 

  8. Jeffrey, J. J. & Gross, J. Collagenase from rat uterus isolation and partial characterization. Biochemistry 9, 268–273 (1970).

    Article  CAS  PubMed  Google Scholar 

  9. Roswit, W. T., Halme, J. & Jeffrey, J. J. Purification and properties of rat uterine procollagenase. Arch. Biochem. Biophys. 225, 285–295 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Harper, E., Bloch, K. J. & Gross, J. The zymogen of tadpole collagenase. Biochemistry 10, 3035–3041 (1971).

    Article  CAS  PubMed  Google Scholar 

  11. Birkedal-Hansen, H., Cobb, C. M., Taylor, R. E. & Fullmer, H. M. Activation of latent bovine gingival collagenase. Arch. Oral Biol. 20, 681–685 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. Van Wart, H. E. & Birkedal-Hansen, H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl Acad. Sci. USA 87, 5578–5582 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ito, A. & Nagase, H. Evidence that human rheumatoid synovial matrix metalloproteinase 3 is an endogenous activator of procollagenase. Arch. Biochem. Biophys. 267, 211–216 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Treadwell, B. V. et al. Purification and characterization of collagenase activator protein synthesized by articular cartilage. Arch. Biochem. Biophys. 251, 715–723 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. He, C. et al. Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc. Natl Acad. Sci. USA 86, 2632–2636 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sato, H. et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370, 61–64 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Pei, D. & Weiss, S. J. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375, 244–247 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Welgus, H. G. et al. A specific inhibitor of vertebrate collagenase produced by human skin fibroblasts. J. Biol. Chem. 254, 1938–1943 (1979).

    CAS  PubMed  Google Scholar 

  19. Docherty, A. J. P. et al. Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature 318, 66–69 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Gomis-Rüth, F. X. et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 389, 77–81 (1997).

    Article  PubMed  Google Scholar 

  21. Goldberg, G. I. et al. Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteinases designated TIMP-2. Proc. Natl Acad. Sci. USA 86, 8207–8211 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goldberg, G. I., Strongin, A., Collier, I. E., Genrich, L. T. & Marmer, B. L. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J. Biol. Chem. 267, 4583–4591 (1992).

    CAS  PubMed  Google Scholar 

  23. Hayakawa, T., Yamashita, K., Tanzawa, K., Uchijima, E. & Iwata, K. Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. FEBS Lett. 298, 29–32 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Lovejoy, B. et al. Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 263, 375–377 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Bode, W. & Maskos, K. in Matrix Metalloproteinase Protocols (ed. Clark, I. M.) 45–77 (Humana, New Jersey, 2001).

    Google Scholar 

  26. Murphy, G. et al. The role of the C-terminal domain in collagenase and stromelysin specificity. J. Biol. Chem. 267, 9612–9618 (1992).

    CAS  PubMed  Google Scholar 

  27. Hirose, T., Patterson, C., Pourmotabbed, T., Mainardi, C. L. & Hasty, K. A. Structure–function relationship of human neutrophil collagenase: identification of regions responsible for substrate specificity and general proteinase activity. Proc. Natl Acad. Sci. USA 90, 2569–2573 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Overall, C. M. in Matrix Metalloproteinase Protocols (ed. Clark, I. M) 79–120 (Humana, New Jersey, 2002).

    Google Scholar 

  29. Morgunova, E. et al. Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science 284, 1667–1670 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Gross, R. H., Sheldon, L. A., Fletcher, C. F. & Brinckerhoff, C. E. Isolation of a collagenase cDNA clone and measurement of changing collagenase mRNA levels during induction in rabbit synovial fibroblasts. Proc. Natl Acad. Sci. USA 81, 1981–1985 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matrisian, L. M., Glaichenhaus, N., Gesnel, M. C. & Breathnach, R. Epidermal growth factor and oncogenes induce transcription of the same cellular mRNA in rat fibroblasts. EMBO J. 4, 1435–1440 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goldberg, G. I. et al. Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein. J. Biol. Chem. 261, 6600–6605 (1986).

    CAS  PubMed  Google Scholar 

  33. Whitham, S. E. et al. Comparison of human stromelysin and collagenase by cloning and sequence analysis. Biochem. J. 240, 913–916 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matrisian, L. M. et al. The mRNA coding for the secreted protease transin is expressed more abundantly in malignant than in benign tumors. Proc. Natl Acad. Sci. USA 83, 9413–9417 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Velasco, G. & Lopez-Otin, C. in Matrix Metalloproteinase Protocols (ed. Clark, I. M.) 25–44 (Humana, New Jersey, 2001).

    Google Scholar 

  36. Breathnach, R., Matrisian, L. M., Gesnel, M. C., Staub, A. & Leroy, P. Sequences coding for part of oncogene-induced transin are highly conserved in a related rat gene. Nucleic Acids Res. 15, 1139–1151 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Massova, I., Kotra, L. P., Fridman, R. & Mobashery, S. Matrix metalloproteinases: structures, evolution, and diversification. FASEB J. 12, 1075–1095 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Collier, I. E., Bruns, G. A. P., Goldberg, G. I. & Gerhard, D. S. On the structure and chromosome location of the 72- and 92-kDa human type IV collagenase genes. Genomics 9, 429–434 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Quinn, C. O. et al. Rat collagenase cloning, amino acid sequence comparison, and parathyroid hormone regulation in osteoblastic cells. J. Biol. Chem. 265, 22342–22347 (1990).

    CAS  PubMed  Google Scholar 

  40. Freije, J. M. P. et al. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J. Biol. Chem. 269, 16766–16773 (1994).

    CAS  PubMed  Google Scholar 

  41. Balbin, M. et al. Identification and enzymatic characterization of two diverging murine counterparts of human interstitial collagenase (MMP-1) expressed at sites of embryo implantation. J. Biol. Chem. 276, 10253–10262 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Woessner, J. F. Jr. in MMPs and TIMPs: An Historical Perspective (ed. Clark, I. M.) 1–23; Methods in Molecular Biology (ed. Walker, J. M.) Vol. 151, (Humana, New Jersey, 2001).

    Google Scholar 

  43. Llano, E. et al. Identification and characterization of human MT5-MMP, a new membrane- bound activator of progelatinase A overexpressed in brain tumors. Cancer Res. 59, 2570–2576 (1999).

    CAS  PubMed  Google Scholar 

  44. Puente, X. S., Pendas, A. M., Llano, E., Velasco, G. & Lopez-Otin, C. Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Res. 56, 944–949 (1996).

    CAS  PubMed  Google Scholar 

  45. Itoh, Y. et al. Membrane type 4 matrix metalloproteinase (MT4-MMP, MMP-17) is a glycosylphosphatidylinositol-anchored proteinase. J. Biol. Chem. 274, 34260–34266 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Velasco, G. et al. Human MT6-matrix metalloproteinase: identification, progelatinase A activation, and expression in brain tumors. Cancer Res. 60, 877–882 (2000).

    CAS  PubMed  Google Scholar 

  47. Angel, P. et al. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49, 729–739 (1987).

    Article  CAS  PubMed  Google Scholar 

  48. Angel, P. et al. 12-O-tetradecanoyl-phorbol-13-acetate induction of the human collagenase gene is mediated by an inducible enhancer element located in the 5′-flanking region. Mol. Cell. Biol. 7, 2256–2266 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gutmann, A. & Wasylyk, B. The collagenase gene promoter contains a TPA and oncogene-responsive unit encompassing the PEA3 and AP-1 binding sites. EMBO J. 9, 2241–2246 (1990).

    Article  Google Scholar 

  50. Benbow, U. & Brinckerhoff, C. E. The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol. 15, 519–526 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Crawford, H. C. & Matrisian, L. M. Mechanisms controlling the transcription of matrix metalloproteinase genes in normal and neoplastic cells. Enzyme Protein 49, 20–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Vincenti, M. P. in Matrix Metalloproteinase Protocols (ed. Clark, I. M.) 121–148 (Humana, New Jersey,2001).

    Google Scholar 

  53. Ye, S. Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biol. 19, 623–629 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Ye, S. et al. Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J. Biol. Chem. 271, 13055–13060 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Rutter, J. L. et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res. 58, 5321–5325 (1998).

    CAS  PubMed  Google Scholar 

  56. Weeks, J. G., Halme, J. & Woessner, J. F. Jr. Extraction of collagenase from the involuting rat uterus. Biochim. Biophys. Acta 445, 205–214 (1976).

    Article  CAS  PubMed  Google Scholar 

  57. Hulboy, D. L., Rudolph, L. A. & Matrisian, L. M. Matrix metalloproteinases as mediators of reproductive function. Mol. Hum. Reprod. 3, 27–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Mudgett, J. S. et al. Susceptibility of stromelysin 1-deficient mice to collagen-induced arthritis and cartilage destruction. Arthritis Rheum. 41, 110–121 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Itoh, T. et al. Unaltered secretion of β-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J. Biol. Chem. 272, 22389–22392 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Wilson, C. L., Heppner, K. J., Labosky, P. A., Hogan, B. L. M. & Matrisian, L. M. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase mat-rilysin. Proc. Natl Acad. Sci. USA 94, 1402–1407 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shipley, J. M., Wesselschmidt, R. L., Kobayashi, D. K., Ley, T. J. & Shapiro, S. D. Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc. Natl Acad. Sci. USA 93, 3942–3946 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Masson, R. et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J. Cell Biol. 140, 1535–1541 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vu, T. H. et al. MMP-9/Gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Holmbeck, K. et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99, 81–92 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Weber, B. H. F., Vogt, G., Pruett, R. C., Stohr, H. & Felbor, U. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nature Genet. 8, 352–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Martignetti, J. A. et al. Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nature Genet. 28, 261–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Hautamaki, R. D., Kobayashi, D. K., Senior, R. M. & Shapiro, S. D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Nelson, A. R., Fingleton, B., Rothenberg, M. L. & Matrisian, L. M. Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol. 18, 1135–1149 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Harris, E. D. Jr, DiBona, D. R. & Krane, S. M. Collagenases in human synovial fluid. J. Clin. Invest. 48, 2104–2113 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Harris, E. D. Jr, DiBona, D. R. & Krane, S. M. A mechanism for cartilage destruction in rheumatoid arthritis. Trans. Assoc. Am. Physicians 83, 267–276 (1970).

    PubMed  Google Scholar 

  71. Harris, E. D. Jr & Krane, S. M. An endopeptidase from rheumatoid synovial tissue culture. Biochim. Biophys. Acta 258, 566–576 (1972).

    Article  CAS  PubMed  Google Scholar 

  72. Dayer, J. M., Graham, R., Russell, G. & Krane, S. M. Collagenase production by rheumatoid synovial cells: stimulation by a human lymphocyte factor. Science 195, 181–183 (1977).

    Article  CAS  PubMed  Google Scholar 

  73. Firestein, G. in Textbook of Rheumatology (eds Kelley, W., Harris, E. D. J., Ruddy, S. & Sledge, S.) 851–897 (W. B. Saunders, Philadelphia, 1997).

    Google Scholar 

  74. Liotta, L. A. et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284, 67–68 (1980).

    Article  CAS  PubMed  Google Scholar 

  75. Sternlicht, M. D. & Bergers, G. Matrix metalloproteinases as emerging targets in anticancer therapy: status and prospects. Emerging Therapeutic Targets 4, 609–633 (2000).

    Article  CAS  Google Scholar 

  76. Basset, P. et al. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348, 699–704 (1990).

    Article  CAS  PubMed  Google Scholar 

  77. Koop, S. et al. Overexpression of metalloproteinase inhibitor in B16F10 cells does not affect extravasation but reduces tumor growth. Cancer Res. 54, 4791–4797 (1994).

    CAS  PubMed  Google Scholar 

  78. Stetler-Stevenson, W. G. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J. Clin. Invest. 103, 1237–1241 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Whittaker, M., Floyd, C. D., Brown, P. & Gearing, A. J. H. Design and therapeutic application of matrix metalloproteinase inhibitors. Chem. Rev. 99, 2735–2776 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Reich, R. et al. Inhibitors of collagenase IV and cell adhesion reduce the invasive activity of malignant tumour cells. Ciba Found. Symp. 141, 193–210 (1988).

    CAS  PubMed  Google Scholar 

  81. Brown, P. D., Davidson, A. H., Drummond, A. H., Gearing, A. & Whittaker, M. in Matrix Metalloproteinase Inhibitors in Cancer Therapy (eds Clendeninn, N. J. & Appelt, K.) 113–142 (Humana, New Jersey, 2001).

    Google Scholar 

  82. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinases: trials and tribulations. Science (in the press).

  83. Wynn, R. L. Latest FDA approvals for dentistry. Gen. Dent. 47, 19–22 (1999).

    CAS  PubMed  Google Scholar 

  84. Edwards, D. R. et al. Transforming growth factor β modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J. 6, 1899–1904 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kerr, L. D., Miller, D. B. & Matrisian, L. M. TGF-β1 inhibition of transin–stromelysin gene expression is mediated through a fos binding sequence. Cell 61, 267–278 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Uria, J. A., Jimenez, M. G., Balbin, M., Freije, J. M. & Lopez-Otin, C. Differential effects of transforming growth factor-β on the expression of collagenase-1 and collagenase-3 in human fibroblasts. J. Biol. Chem. 273, 9769–9777 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. White, L. A., Mitchell, T. I. & Brinckerhoff, C. E. Transforming growth factor β inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene functions as a repressor of constitutive transcription. Biochim. Biophys. Acta 1490, 259–268 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Jonat, C. et al. Anti-tumor promotion and anti-inflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62, 1189–1204 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Yang-Yen, H. F. et al. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein–protein interaction. Cell 62, 1205–1215 (1990).

    Article  CAS  PubMed  Google Scholar 

  90. Schüle, R. et al. Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell 62, 1217–1226 (1990).

    Article  PubMed  Google Scholar 

  91. Brinckerhoff, C. E., McMillan, R. M., Dayer, J. M. & Harris, E. D. Jr. Inhibition by retinoic acid of collagenase production in rheumatoid synovial cells. N. Engl. J. Med. 303, 432–436 (1980).

    Article  CAS  PubMed  Google Scholar 

  92. Nicholson, R. C. et al. Negative regulation of the rat stromelysin gene promoter by retinoic acid is mediated by an AP1 binding site. EMBO J. 9, 4443–4454 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schule, R. et al. Retinoic acid is a negative regulator of AP-1-responsive genes. Proc. Natl Acad. Sci. USA 88, 6092–6096 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fisher, G. J. et al. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379, 335–339 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Fisher, G. J. et al. Pathophysiology of premature skin aging induced by ultraviolet light. N. Engl. J. Med. 337, 1419–1428 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Lala, D. S. et al. Activation of specific RXR heterodimers by an antagonist of RXR homodimers. Nature 383, 450–453 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Spanjaard, R. A. et al. Specific activation of retinoic acid receptors (RARs) and retinoid X receptors reveals a unique role for RARγ in induction of differentiation and apoptosis of S91 melanoma cells. J. Biol. Chem. 272, 18990–18999 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Mix, K. S. et al. A synthetic triterpenoid selectively inhibits the induction of matrix metalloproteinases 1 and 13 by inflammatory cytokines. Arthritis Rheum. 44, 1096–1104 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Galardy, R. E. et al. Low molecular weight inhibitors in corneal ulceration. Ann. NY Acad. Sci. 732, 315–323 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. British Biotech PLC. http://www.britishbiotech.com/product.htm.2002.

  101. Gross, J. & Nagai, Y. Specific degradation of the collagen molecule by tadpole collagenolytic enzyme. Proc. Natl Acad. Sci. USA 54, 1197–1204 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Itoh, Y. et al. Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO J. 20, 4782–4793 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

John Jeffrey, a pioneer in the area of MMP research, died on November 24, 2001. John was a consummate scientist and a wonderful friend to the entire MMP community. We dedicate this review to him.

Supported by grants to C.E.B. from the National Institutes of Health (NIH), DoD and the Susan G. Komen Foundation, and to L.M.M. from the NIH. L.M.M. receives support for research studies from Pfizer Global, Inc. and Abbott Laboratories, and has served as a consultant for Bristol Myers-Squibb, Roche Biosciences, and Abbott Laboratories. We thank G. Stricklin for providing figures and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn M. Matrisian.

Related links

Related links

DATABASES

Interpro:

hemopexin domain

immunoglobulin-like domain

 OMIM:

atherosclerosis

emphysema

multiple sclerosis

rheumatoid arthritis

Sorsby's fundus dystrophy

 Swiss-Prot:

Fos

furin

MMP-1

MMP-2

MMP-3

MMP-7

MMP-8

MMP-9

MMP-10

MMP-11

MMP-12

MMP-13

MMP-20

MMP-26

MT1-MMP

MT2-MMP

MT3-MMP

MT5-MMP

MT6-MMP

plasminogen

rat interstitial collagenase

TIMP-1

TIMP-2

TIMP-3

FURTHER INFORMATION

Agouron Pharmaceuticals

British Biotech

Bayer Pharmaceuticals

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinckerhoff, C., Matrisian, L. Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3, 207–214 (2002). https://doi.org/10.1038/nrm763

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm763

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing