Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Bacterial toxins and cancer — a case to answer?

Abstract

Since the discovery that Helicobacter pylori infection leads to gastric cancer, other chronic bacterial infections have been shown to cause cancer. The bacterial and host molecular mechanisms remain unclear. However, many bacteria that cause persistent infections produce toxins that specifically disrupt cellular signalling to perturb the regulation of cell growth or to induce inflammation. Other bacterial toxins directly damage DNA. Such toxins mimic carcinogens and tumour promoters and might represent a paradigm for bacterially induced carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Helicobacter pylori interaction with host cell functions.
Figure 2: Signalling pathways affected by the Pasteurella multocida toxin (PMT).

Similar content being viewed by others

References

  1. Lax, A. J. & Thomas, W. How bacteria could cause cancer: one step at a time. Trends Microbiol. 10, 293–299 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Kuper, H., Adami, H. -O. & Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Int. Med. 248, 171–183 (2000).

    Article  CAS  Google Scholar 

  3. Rous, P. A sarcoma of the fowl transmissible by an agent separable from the tumour cells. J. Exp. Med. 13, 397–411 (1911).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wazer, D. E., Liu, X.-L., Chu, Q., Gao, Q. & Band, V. Immortalization of distinct human mammary epithelial cell types by human papilloma virus 16 E6 or E7. Proc. Natl Acad. Sci. USA 92, 3687–3691 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosin, M. P., Saad el Din Zaki, S., Ward, A. J. & Anwar, W. A. Involvement of inflammatory reactions and elevated cell proliferation in the development of bladder cancer in schistosomiasis patients. Mutat. Res. 305, 283–292 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Uemura, N. et al. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 345, 784–789 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Siman, J. H., Forsgren, A., Berglund, G. & Floren, C. H. Association between Helicobacter pylori and gastric carcinoma in the city of Malmo, Sweden — a prospective study. Scand. J. Gastroentero. 32, 1215–1221 (1997).

    Article  CAS  Google Scholar 

  8. Nardone, G., Rocco, A. & Malfertheiner, P. Helicobacter pylori and molecular events in precancerous gastric lesions. Aliment. Pharm. Therap. 20, 261–270 (2004).

    Article  CAS  Google Scholar 

  9. Court, M., Robinson, P. A., Dixon, M. F. & Crabtree, J. E. Gastric Helicobacter species infection in murine and gerbil models: comparative analysis of effects of H. pylori and H. felis on gastric epithelial cell proliferation. J. Infect. Dis. 186, 1348–1352 (2002).

    Article  PubMed  Google Scholar 

  10. Naumann, M. & Crabtree, J. E. in Bacterial Protein Toxins (ed. Lax, A. J.) 169–198 (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  11. Naito, Y. & Yoshikawa, T. Molecular and cellular mechanisms involved in Helicobacter pylori-induced inflammation and oxidative stress. Free Radic. Biol. Med. 33, 323–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Jüttner, S. et al. Helicobacter pylori stimulates host cyclooxygenase-2 gene transcription: critical importance of MEK/ERK-dependent activation of USF1/-2 and CREB transcription factors. Cell. Microbiol. 5, 821–834 (2003).

    Article  PubMed  Google Scholar 

  13. Kang, G. H., Lee, S., Kim, J. -S. & Jung, H. -Y. Profile of aberrant CpG island methylation along the multistep pathway of gastric carcinogenesis. Lab. Invest. 83, 635–641 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Isaacson, P. G. & Du, M. -Q. MALT lymphoma: from morphology to molecules. Nature Rev. Cancer 4, 644–653 (2004).

    Article  CAS  Google Scholar 

  15. Caygill, C. P. J., Braddick, M., Hill, M. J., Knowles, R. L. & Sharp, J. C. M. The association between typhoid carriage, typhoid infection and subsequent cancer at a number of sites. Eur. J. Cancer Prev. 4, 187–193 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. World Health Organization. Water-related diseases. Typhoid and paratyphoid eneteric diseases. <http://www.who.int/water_sanitation_health/diseases/typhoid/en> (2005).

  17. Lecuit, M. et al. Immunoproliferative small intestinal disease associated with Campylobacter jejuni. N. Engl. J. Med. 350, 239–248 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Ferreri, A. J. M. et al. Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas. J. Natl Cancer Inst. 96, 586–594 (2004).

    Article  PubMed  Google Scholar 

  19. Brenner, A. V. et al. Previous pulmonary diseases and risk of lung cancer in Gansu Province, China. Int. J. Epidemiol. 30, 118–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Kreuzer, M. et al. Risk factors for lung cancer among nonsmoking women. Int. J. Cancer 100, 706–713 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Parker, A. S., Cerhan, J. R., Lynch, C. F., Leibovich, B. C. & Cantor, K. P. History of urinary tract infection and risk of renal cell carcinoma. Am. J. Epidemiol. 159, 42–48 (2004).

    Article  PubMed  Google Scholar 

  22. Luperchio, S. A. & Schauer, D. B. Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia. Microbes Infect. 3, 333–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Newman, J. V., Kosaka, T., Sheppard, B. J., Fox, J. G. & Schauer, D. B. Bacterial infection promotes colon tumorigenesis in ApcMin/+ mice. J. Infect. Dis. 184, 227–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Dalgleish, A. G. & O'Byrne, K. J. Chronic immune activation and inflammation in the pathogenesis of AIDS and cancer. Adv. Can. Res. 84, 231–276 (2002).

    Article  CAS  Google Scholar 

  25. Macarthur, M., Hold, G. L. & El-Omar, E. M. Inflammation and cancer: II. role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G515–G520 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Finch, C. E. & Crimmins, E. M. Inflammatory exposure and historical changes in human life-spans. Science 305, 1736–1739 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Cover, T. L. & Blanke, S.R. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nature Rev. Microbiol. 3, 320–332 (2005).

    Article  CAS  Google Scholar 

  28. Galmiche, A. et al. The N-terminal 34kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J. 19, 6361–6370 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakayama, M. et al. Helicobacter pylori VacA activates the p38/activating transcription factor 2-mediated signal pathway in AZ-521 cells. J. Biol. Chem. 279, 7024–7028 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Censini, S. et al. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl Acad. Sci. USA 93, 14648–14653 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blaser, M. J. et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 55, 2111–2115 (1995).

    CAS  PubMed  Google Scholar 

  32. Selbach, M. et al. The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. EMBO J. 22, 515–528 (2002).

    Article  Google Scholar 

  33. Higashi, H. et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Segal, E. D., Cha, J., Lo, J., Falkow, S. & Tompkins, L. S. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl Acad. Sci. USA 96, 14559–14564 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Churin, Y. et al. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J. Cell Biol. 161, 249–255 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang, W., Hiscox, S., Matsumoto, K. & Nakamura, T. Hepatocyte growth factor/scatter factor, its molecular, cellular and clinical implication in cancer. Crit. Rev. Oncol. Hemat. 29, 209–248 (1999).

    Article  CAS  Google Scholar 

  37. Higashi, H. et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc. Natl Acad. Sci. USA 99, 14428–14433 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, S. D. et al. Multiple genes in the left half of the cag pathogenicity island of Helicobacter pylori are required for tyrosine kinase-dependent transcription of interleukin-8 in gastric epithelial cells. Infect. Immun. 67, 3893–3899 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunol. 5, 1166–1174 (2004).

    Article  CAS  Google Scholar 

  40. Mundy, R. et al. Identification of a novel Citrobacter rodentium type III secreted protein, EspI, and roles of this and other secreted proteins in infection. Infect. Immun. 72, 2288–2302 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lax, A. J. et al. The Pasteurella multocida toxin interacts with signalling pathways to perturb cell growth and differentiation. Int. J. Med. Microbiol. 293, 505–512 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Dyer, N. W., Haynes, J. S., Ackermann, M. R. & Rimler, R. B. Morphological effects of Pasteurella multocida type-D dermonecrotoxin on rat osteosarcoma cells in a nude mouse model. J. Comp. Pathol. 119, 149–158 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Pullinger, G. D., Bevir, T. & Lax, A. J. The Pasteurella multocida toxin is encoded within a lysogenic bacteriophage. Mol. Microbiol. 51, 255–269 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Landraud, L. et al. E. coli CNF1 toxin: a two-in-one system for host-cell invasion. Int. J. Med. Microbiol. 293, 513–518 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Thomas, W. et al. Cytotoxic necrotizing factor from Escherichia coli induces RhoA-dependent expression of the cyclooxygenase-2 gene. Infect. Immun. 69, 6839–6845 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, S., Morin, P. J., Maouyo, D. & Sears, C. L. Bacteroides fragilis enterotoxin induces c-myc expression and cellular proliferation. Gastroenterol. 124, 392–400 (2003).

    Article  CAS  Google Scholar 

  48. Frisan, T., Cortes-Bratti, X. & Thelestam, M. Cytolethal distending toxins and activation of DNA damage-dependent checkpoint responses. Int. J. Med. Microbiol. 291, 495–499 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. McSweeney, L. A. & Dreyfus, L. A. Nuclear localization of the Escherichia coli cytolethal distending toxin CdtB subunit. Cell. Microbiol. 6, 447–458 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Hassane, D. C., Lee, R. B. & Pickett, C. L. Campylobacter jejuni cytolethal distending toxin promotes DNA repair responses in normal human cells. Infect. Immun. 71, 541–545 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haghjoo, E. & Galán, J. E. Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc. Natl Acad. Sci. USA 101, 4614–4619 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marchès, O. et al. Enteropathogenic and enterohaemorrhagic Escherichia coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol. Microbiol. 50, 1553–1567 (2003).

    Article  PubMed  Google Scholar 

  53. Janka, A. et al. Cytolethal distending toxin gene cluster in enterohemorrhagic Escherichia coli O157:H and O157:H7: characterization and evolutionary considerations. Infect. Immun. 71, 3634–3638 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rippere-Lampe, K. E. et al. Cytotoxic necrotizing factor type 1-positive Escherichia coli causes increased inflammation and tissue damage to the prostate in a rat prostatitis model. Infect. Immun. 69, 6515–6519 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Justice, S. S. et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl Acad. Sci. USA 101, 1333–1338 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mulvey, M. A., Schilling, J. D. & Hultgren, S. J. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 69, 4572–4579 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to A. Grigoriadis, K. Homer, A. Hosie, R. Palmer, R. Reljic, L. Samson, B. Thomas and W. Wade for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez

Bacteroides fragilis

Campylobacter jejuni

Chlamydia psittaci

Citrobacter rodentium

Helicobacter pylori

Salmonella typhi

Pasteurella multocida

FURTHER INFORMATION

Lax's homepage

National Cancer Institute

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lax, A. Bacterial toxins and cancer — a case to answer?. Nat Rev Microbiol 3, 343–349 (2005). https://doi.org/10.1038/nrmicro1130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing