Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gut microorganisms, mammalian metabolism and personalized health care

Abstract

The mammalian gut microbiota interact extensively with the host through metabolic exchange and co-metabolism of substrates. Such metabolome–metabolome interactions are poorly understood, but might be implicated in the aetiology of many human diseases. In this paper, we assess the importance of the gut microbiota in influencing the disposition, fate and toxicity of drugs in the host, and conclude that appropriate consideration of individual human gut microbial activities will be a necessary part of future personalized health-care paradigms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visualizing the host and gut-microbial co-metabolome interaction.
Figure 2: Urinary metabolites and gut microbiota conventionalization in rats.
Figure 3: Analysing microbiomes with CLOUDS.
Figure 4: Herbal medicines change sym-xenobiotic metabolism.

Similar content being viewed by others

References

  1. Urbanczyk-Wochniak, E. et al. Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep. 4, 989–993 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nicholson, J. K., Holmes, E., Lindon, J. C. & Wilson, I. D. The challenges of modelling mammalian biocomplexity. Nature Biotechnol. 22, 1268–1274 (2004).

    CAS  Google Scholar 

  3. Hood, L. & Galas, D. The digital code of DNA. Nature 421, 444–448 (2003).

    PubMed  Google Scholar 

  4. Smith, L. L. Key challenges for toxicologists in the 21st Century. Trend. Pharm. Sci. 22, 281–285 (2001).

    CAS  Google Scholar 

  5. Ungelman-Sundberg, M. Pharmacogenetics of cytochrome P450 & its application in drug therapy: the past, present and future. Trend. Pharm. Sci. 25, 193–200 (2004).

    Google Scholar 

  6. Nebert, D. W., Jorge-Nebert, L. & Vesell, E. S. Pharmacogenomics and 'individualized drug therapy': high expectations and disappointing achievements. Am. J. Pharmacogenomics 3, 361–370 (2003).

    Google Scholar 

  7. Nicholson, J. K., Connelly, J., Lindon, J. C. & Holmes, E. Metabonomics: a platform for studying drug toxicity and gene function. Nature Rev. Drug Disc. 1, 153–161 (2002).

    CAS  Google Scholar 

  8. Lindon, J. C., Nicholson, J. K., Holmes, E. & Everett, J. R. Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts. Magn. Reson. 12, 289–320 (2000).

    CAS  Google Scholar 

  9. Farthing, M. J. G. Bugs and the gut: an unstable marriage. Best Pract. Res. Clin. Gastroent. 18, 233–239 (2004).

    Google Scholar 

  10. Guarner, F. & Malagelada, J. R. Gut flora in health and disease. Lancet 361, 512–519 (2003).

    Google Scholar 

  11. Nicholls, A. W., Mortishire-Smith, R. J. & Nicholson, J. K. NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chem. Res. Toxicol. 16, 1395–1404 (2003).

    CAS  Google Scholar 

  12. Bull, T. J. et al. Detection and verification of Mycobacterium avium subsp. paratuberculosis in fresh ileocolonic mucosal biopsy specimens from individuals with and without Crohn's Disease. J. Clin. Microbiol. 41, 2915–2923 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lhoste, E. F. et al. The human colonic microflora influences the alterations of xenobiotic-metabolizing enzymes by catechins in male F344 rats. Food Chem. Toxicol. 41, 695–702 (2003).

    CAS  PubMed  Google Scholar 

  14. Xu, J. & Gordon, J. I. Honor thy symbionts. Proc. Natl Acad. Sci. USA 100, 10452–10459 (2003).

    CAS  PubMed  Google Scholar 

  15. Todar, K. The bacterial flora of humans. Todar's online textbook of bacteriology [online], <http://textbookofbacteriology.net> (2004).

    Google Scholar 

  16. Suau, A. et al. Fusobacterium prausnitzii and related species represent a dominant group within the human fecal flora. Syst. Appl. Microbiol. 24, 139–145 (2001).

    CAS  PubMed  Google Scholar 

  17. Suau, A. et al. Direct rDNA community analysis reveals a myriad of novel bacterial lineages within the human gut. Appl. Environ. Microbiol. 65, 4799–4807 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Upreti, R. K., Shrivastava, R. & Chaturvedi, U. C. Gut microflora and toxic metals: chromium as a model. Indian J. Med. Res. 119, 49–59 (2004).

    CAS  PubMed  Google Scholar 

  19. Acheson, D. W. K. Mucosal immune responses. Best Pract. Res. Clin. Gastroent. 18, 387–404 (2004).

    CAS  Google Scholar 

  20. Hooper, L. V., Bry, L., Falk, P. G. & Gordon, J. I. Host–microbial symbiosis in the mammalian intestine: exploring an intestinal ecosystem. Bioessays 20, 336–343 (1998).

    CAS  Google Scholar 

  21. Hallstrom, M., Eerola, E., Janas, M. & Tammela, O. Effects of mode of delivery and necrotizing enterocolitis on the intestinal microflora in preterm infants. Eur. J. Clin. Microbiol. Infect. Dis. 23, 463–470 (2004).

    CAS  PubMed  Google Scholar 

  22. Dai, D. & Walker, W. A. Protective nutrients and bacterial colonization in the immature human gut. Adv. Pediatr. 46, 353–382 (1999).

    CAS  PubMed  Google Scholar 

  23. Fanaro, S., Chierici, R., Guerrini, P & Vigi, V. Intestinal microflora in early infancy: composition and development. Acta Paediatr. Supp. 91, 48–55 (2003).

    CAS  Google Scholar 

  24. Lederberg, J. & McCray, A. T. 'Ome sweet 'Omics – a genealogical treasury of words. Scientist 15, 8 (2001).

    Google Scholar 

  25. Illing, H. P. A. Techniques for microfloral and associated metabolic studies in relation to the absorption and enterohepatic circulation of drugs. Xenobiotica 11, 815–830 (1981).

    CAS  PubMed  Google Scholar 

  26. Boxenbaum, H. G., Bekersky, I., Jack, M. J. & Kaplan, S. A. Influence of gut microflora on bioavailability. Drug. Met. Rev. 9, 259–279 (1979).

    CAS  Google Scholar 

  27. Nicholson, J. K. & Wilson, I. D. Understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nature Rev. Drug Discov. 2, 668–676 (2003).

    CAS  Google Scholar 

  28. Gilmore, M. S. & Ferretti, J. J. The thin line between gut commensal and pathogen. Science 299, 1999–2002 (2003).

    CAS  PubMed  Google Scholar 

  29. Hooper, L. V. & Gordon, J. L. Commensal host-bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    CAS  Google Scholar 

  30. Yoshida, K. et al. Urinary sulfur-containing metabolite produced by intestinal bacteria following oral administration of dimethylarsinic acid to rats. Chem. Res. Toxicol. 16, 1124–1129 (2003).

    CAS  PubMed  Google Scholar 

  31. Adlerberth, I. et al. Intestinal colonization of Enterobacteriaceae in Pakistani and Swedish hospital-delivered children. Acta Pediatr. Scand. 80, 602–610 (1991).

    CAS  Google Scholar 

  32. Drasar, B. S., Montgomery, F. & Tomkins, A. M. Diet and faecal flora in three dietary groups in rural northern Nigeria. J. Hyg. 96, 59–65 (1986).

    CAS  PubMed  Google Scholar 

  33. Mathan, V. I., Wiederman, J., Dobkin, J. F. & Lindenbaum, J. Geographic differences in digoxin inactivation, a metabolic activity of the human anaerobic gut flora. Gut 30, 971–977 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kelly, D. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR–γ and ReIA. Nature Immunol. 5, 104–112 (2004).

    CAS  Google Scholar 

  35. Koo, S. H. et al. PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nature Med. 10, 530–534 (2004).

    CAS  PubMed  Google Scholar 

  36. Wellen, K. E. & Hotamisligil, G. S. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Invest. 112, 1785–1788 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fekete, S. Recent findings and future perspectives of digestive physiology in rabbits: a review. Acta Vet. Hung. 37, 265–279 (1989).

    CAS  PubMed  Google Scholar 

  38. Weimer, P. J. Manipulating ruminal fermentation: a microbial ecological perspective. J. Anim. Sci. 76, 3114–3122 (1998).

    CAS  PubMed  Google Scholar 

  39. Rowland, I. R. Factors affecting metabolic activity of the intestinal microflora. Drug Met. Rev. 19, 243–261 (1988).

    CAS  Google Scholar 

  40. Caldwell, J. & Hawksworth, G. M. The demethylation of methamphetamine by intestinal microflora. J. Pharm. Pharmacol. 25, 422–4244 (1973).

    CAS  PubMed  Google Scholar 

  41. Woolley, J. L. Jr & Siegel, C. W. The role of dietary nitrate and nitrite in the reductive deamination of sulfadiazine by the rat, guinea pig and neonatal calf. Life Sci. 30, 2229–2234 (1982).

    CAS  PubMed  Google Scholar 

  42. Gardana, C., Simonetti, P., Canzi, E., Zanchi, R. & Pietta, P. Metabolism of stevioside and rebaudioside A from Stevia rebaudiana extracts by human microflora. J. Agric. Food. Chem. 51, 6618–6622 (2003).

    CAS  PubMed  Google Scholar 

  43. Chourasia, M. K. & Jain, S. K. Pharmaceutical approaches to colon targeted drug delivery systems. J. Pharm. Pharm. Sci. 6, 33–66 (2003).

    CAS  PubMed  Google Scholar 

  44. Bakke, J. E. & Gustafsson, J. A. Role of intestinal flora in metabolism of agrochemicals conjugated with glutathione. Xenobiotica 16, 1047–1056 ( 1986).

    CAS  PubMed  Google Scholar 

  45. Buhler, R. et al. Human alcohol dehydrogenase: structural differences between the β and γ subunits suggest parallel duplications in isoenzyme evolution and predominant expression of separate gene descendants in livers of different mammals. Proc. Natl Acad. Sci. USA 81, 6320–6324 (1984).

    CAS  PubMed  Google Scholar 

  46. Wostmann, B. S. The germ free animal in nutritional studies. Ann. Rev. Nutr. 1, 257–279 (1981).

    CAS  Google Scholar 

  47. Ogawa, H. et al. Sodium butyrate inhibits angiogenesis of human intestinal microvascular endothelial cells through COX-2 inhibition. FEBS Lett. 554, 88–94 (2003).

    CAS  PubMed  Google Scholar 

  48. Gordon, J. I., Hooper, L. V., McNevin, M. S., Wong, M. & Bry, L. Epithelial cell growth and differentiation. III. Promoting diversity in the intestine: conversations between the microflora, epithelium and diffuse GALT. Am. J. Physiol. 273, G565–G570 (1997).

    CAS  PubMed  Google Scholar 

  49. Rawls, J. F., Samuel, B. S. & Gordon, J. I. Gnotobiotic zebrafish reveal evolutionary conserved responses to the gut microbiota. Proc. Natl Acad. Sci. USA 101, 4596–4601 (2004)

    CAS  PubMed  Google Scholar 

  50. Tabita, K., Sakaguchi, S., Kozaki, S. & Sakaguchi, G. Comparative studies on Clostridium botulinum type A strains associated with infant botulism in Japan and in California, USA. Jpn. J. Med. Sci. Biol. 43, 219–231 (1990).

    CAS  PubMed  Google Scholar 

  51. Danielson, P. B. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr. Drug Metab. 3, 561–597 (2002).

    CAS  PubMed  Google Scholar 

  52. Phipps, A. N., Stewart, J., Wright, B. & Wilson, I. D. Effect of diet on the urinary excretion of hippuric acid and other dietary-derived aromatics in rat. A complex interaction between diet, gut microflora and substrate specificity. Xenobiotica 28, 527–537 (1998).

    CAS  PubMed  Google Scholar 

  53. Williams, R. E., Eyton-Jones, H. W., Farnworth, M. J., Gallagher, R. & Provan, W. M. Effect of intestinal microflora on the urinary metabolic profile of rats: a 1H-nuclear magnetic resonance spectroscopy study. Xenobiotica 32, 783–794 (2002).

    CAS  PubMed  Google Scholar 

  54. Park, B. K., Kitteringham, N. R., Powell, H. & Pirmohamed, M. Advances in molecular toxicology — towards understanding idiosyncratic drug toxicity. Toxicology 153, 39–60 (2000).

    CAS  PubMed  Google Scholar 

  55. Ingelman-Sundberg, M. Polymorphism of cytochrome P450 and xenobiotic toxicity. Toxicology 181, 447–452 (2002).

    PubMed  Google Scholar 

  56. Lindon, J. C et al. Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol. Appl. Pharmacol. 187, 137–146 (2003).

    CAS  PubMed  Google Scholar 

  57. Ebbels, T. M. D. et al. Toxicity classification from metabonomic data using a density superposition approach: 'CLOUDS'. Anal. Chim. Acta 490, 109–122 (2003).

    CAS  Google Scholar 

  58. Akao, T, et al. Baicalin, the predominant flavone glucuronide of Scutellariae radix, is absorbed from the rat gastrointestinal tract as the aglycone and restored to its original form. J. Pharm. Pharmacol. 52, 1563–1568 (2000).

    CAS  PubMed  Google Scholar 

  59. Bowey, E., Adlercreutz, H. & Rowland, I. Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food Chem. Toxicol. 41, 631–636 (2003).

    CAS  PubMed  Google Scholar 

  60. Turner, N. J., Thomson, B. M. & Shaw, I. C. Bioactive isoflavones in functional foods: the importance of gut microflora and bioavailability. Nutr. Rev. 61, 204–213 (2003).

    PubMed  Google Scholar 

  61. Gonthier, M. P. et al. Microbial aromatic metabolites formed in the gut account for a major fraction of the polyphenols excreted in urine of rats fed red wine polyphenols. J. Nutr. 133, 461–467 (2003).

    CAS  PubMed  Google Scholar 

  62. Solanky, K. S. et al. Application of biofluid 1H nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Anal. Biochem. 323, 197–204 (2003).

    CAS  PubMed  Google Scholar 

  63. Solanky, K. S. et al. NMR-based metabonomic studies on the biochemical effects of epicatechin in the rat. J. Agric. Food Chem. 51, 4139–4145 (2003).

    CAS  PubMed  Google Scholar 

  64. Beale, B. Probiotics: their tiny worlds are under scrutiny. Scientist 16, 20–22 (2002).

    Google Scholar 

  65. Wang, Y. et al. NMR-based metabonomic strategy for the detection of the metabolic effects of chamomile (Matricaria recutita L.) ingestion. J. Agric. Food Chem. 53, 191–196 (2005).

    CAS  PubMed  Google Scholar 

  66. Peppercorn, M. A. & Goldman, P. Caffeic acid metabolism by bacteria of the human gastrointestinal tract. J. Bacteriol. 108, 996–1000 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sullivan, A., Edlund, C. & Nord, C. E. Effect of antimicrobial agents on the ecological balance of human microflora. Scand. J. Infect. Dis. 33, 899–903 (2001).

    Google Scholar 

  68. Lode, H., Von der Hoh, N., Ziege, S., Borner, K. & Nord, C. E. Ecological effects of linezolid versus amoxicillin/clavulanic acid on the normal intestinal microflora. J. Antimicrobiol. Chemother. 46, 741–749 (2000).

    Google Scholar 

  69. Brindle, J. T. et al. Rapid and non-invasive diagnosis of the presence of coronary heart disease using 1H NMR-based metabonomics. Nature Med. 8, 1439–1444 (2002).

    CAS  PubMed  Google Scholar 

  70. 't Hart, B. A. et al. 1H-NMR spectroscopy combined with pattern recognition analysis reveals characteristic chemical patterns in urines of MS patients and non-human primates with MS-like disease. J. Neurol. Sci. 212, 21–30 (2003).

    CAS  PubMed  Google Scholar 

  71. Wang, Y. et al. Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. Proc. Natl Acad. Sci. USA 101, 12676–12681 (2004).

    CAS  PubMed  Google Scholar 

  72. Fiehn, O. et al. Metabolite profiling for plant functional genomics. Nature Biotech. 18, 1157–1161 (2000).

    CAS  Google Scholar 

  73. Hall, R. et al. Plant metabolomics: the missing link in functional genomics strategies. Plant Cell 14, 1437–1440 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kell, D. B. Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol. 7, 296–307 (2004).

    CAS  PubMed  Google Scholar 

  75. Jonsson, P. et al. A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal. Chem. 76, 1738–1745 (2004).

    CAS  PubMed  Google Scholar 

  76. Clish, C. B. et al. Integrative biological analysis of the APOE*3-leiden transgenic mouse. OMICS 8, 3–13 (2004).

    CAS  PubMed  Google Scholar 

  77. Pham-Tuan, H., Kaskavelis, L., Daykin, C. A. & Janssen, H. G. Method development in high-performance liquid chromatography for high-throughput profiling and metabonomic studies of biofluid samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 789, 283–301 (2003).

    CAS  PubMed  Google Scholar 

  78. Plumb, R. S. et al. Metabonomics: the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Commun. Mass Spectrom. 16, 1991–1996 (2002).

    CAS  PubMed  Google Scholar 

  79. Buchholz, A., Hurlebaus, J., Wandrey, C. & Takors, R. Metabolomics: quantification of intracellular metabolite dynamics. Biomol. Eng. 19, 5–15 (2002).

    CAS  PubMed  Google Scholar 

  80. Nicholson, J. K. et al. High-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and orthogonal acceleration time-of-flight mass spectrometry (o/a-TOF-MS) for the simultaneous analysis and identification of the metabolites of 2-bromo-4-trifluoromethylacetaniline in rat urine. Anal. Chem. 73, 1491–1494 (2001).

    CAS  PubMed  Google Scholar 

  81. Plumb, R. et al. Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 18, 2331–2337 (2004).

    CAS  PubMed  Google Scholar 

  82. Cloarec, O. et al. Statistical total correlation spectroscopy (STOCSY); an exploratory approach for latent biomarker identification from metabolic 1H NMR datasets. Anal. Chem. 77, 1282–1289 (2005).

    CAS  Google Scholar 

  83. Goodacre, R. et al. Rapid identification using pyrolysis mass spectrometry and artificial neural networks of Propionibacterium acnes isolated from dogs. J. Appl. Bacteriol. 76, 124–134 (1994).

    CAS  PubMed  Google Scholar 

  84. Davey, H. M., Jones, A., Shaw, A. D. & Kell, D. B. Variable selection and multivariate methods for the identification of microorganisms by flow cytometry. Cytometry 35, 162–168 (1999).

    CAS  PubMed  Google Scholar 

  85. Bolte, E. R. Autism and Clostridium tetani. Med. Hypotheses 51, 133–144 (1998).

    CAS  PubMed  Google Scholar 

  86. Shaw, W. in Biological treatments for autism and PDD. 2nd edn 25–26 (The Great Plains Publishing Company, Winfield, Kansas, 2002).

    Google Scholar 

  87. Martirosian, G. Anaerobic intestinal microflora in pathogenesis of autism. Postepy. Hig. Med. Dosw. 58, 349–351 (2004).

    Google Scholar 

Download references

Acknowledgements

We thank the BBSRC, EPSRC, The Wellcome Trust and NIH for funding this work. We also thank P. Elliot, J. Lindon and J. Scott (Imperial College, London), J. Utzinger and B. Singer (Princeton University, USA), J. Everett (Pfizer Global Research, UK), M. Bingham (University of Reading,UK) and F. Nicholson for their comments and discussion on this work and related subjects, as well as A. Nicholls (GlaxoSmithKline, UK) and R. Mortishire-Smith (Merck, Sharpe and Dohme, UK) for their assistance and previous collaboration on axenic rat conventionalization studies, and the COMET Team (H. Keun, M. Bollard, T. Ebbels, O. Beckonert) for their work on the CLOUDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy K. Nicholson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez

Bacteroides thetaiotaomicron

Escherichia coli

Clostridium botulinum

Glossary

ANGIOGENESIS

The growth and/or proliferation of new blood vessels, commonly occurring in response to malignant tissue.

COMBINATORIAL METABOLISM

The highly complex process whereby multiple independent metabolic systems (for example, in both host and microorganism) sequentially metabolize a compound, which results in a large number of possible metabolic products with diverse structures.

COX2 INHIBITORS

A relatively new class of non-steroidal anti-inflammatory drugs that block cyclooxygenase 2 (COX2) activity but do not inhibit COX1 enzymes that have gastro-protective effects. Therefore, unlike aspirin and other non-steroidal anti-inflammatory drugs, these compounds do not induce stomach irritation, but their safety has recently been called into question.

METABOLIC CAGE

A housing device for individual animals with the capacity to collect urine and/or faeces samples. These cages are commonly used to monitor the biochemical effects of drugs, toxins or other treatments over time.

METABOLIC TRAJECTORY

The visualization of the dynamic change in the multivariate metabolite profile of a biofluid or tissue with time, as projected using chemometric methods.

METABOLOME

The quantitative complement of all the low molecular weight molecules present in a biological sample.

METABOTYPE

The metabolic phenotype of an organism as measured from its biological fluids.

MICROBIOME

The entourage of associated microflora in a host.

MICROMETABOLITES

Drug metabolites that are present at microscopic levels (but varying between species), so that they are not normally characterized. These metabolites are often derived from combinatorial metabolism.

SYM-XENOBIOTIC

A metabolite that is formed by both gut-microbial and host metabolism but cannot be synthesized by either in isolation, and which forms no part of the energy metabolism or biosynthetic machinery of either system.

TOXICOGENOMICS

The study of the variation of an animal's genome and gene expression and their relationship to toxic effects of drugs and xenobiotics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholson, J., Holmes, E. & Wilson, I. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3, 431–438 (2005). https://doi.org/10.1038/nrmicro1152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing