Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Ethanolamine utilization in bacterial pathogens: roles and regulation

Abstract

Ethanolamine is a compound that can be readily derived from cell membranes and that some bacteria can use as a source of carbon and/or nitrogen. The complex biology and chemistry of this process has been under investigation since the 1970s, primarily in one or two species. However, recent investigations into ethanolamine utilization have revealed important and intriguing differences in gene content and regulatory mechanisms among the bacteria that harbour this catabolic ability. In addition, many reports have connected this process to bacterial pathogenesis. In this Progress article, I discuss the latest research on the phylogeny and regulation of ethanolamine utilization and its possible roles in bacterial pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model for ethanolamine catabolism.
Figure 2: Regulatory features of ethanolamine utilization (eut) operon.

Similar content being viewed by others

References

  1. Randle, C. L., Albro, P. W. & Dittmer, J. C. The phosphoglyceride composition of Gram-negative bacteria and the changes in composition during growth. Biochim. Biophys. Acta 187, 214–220 (1969).

    Article  CAS  PubMed  Google Scholar 

  2. White, D. A. in Form and Function of Phospholipids (eds Ansell, G. B., Hawthorne, J. N. & Dawson, R. M. C.) 441–482 (Elsevier, New York, 1973).

    Google Scholar 

  3. Larson, T. J., Ehrmann, M. & Boos, W. Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J. Biol. Chem. 258, 5428–5432 (1983).

    CAS  PubMed  Google Scholar 

  4. Proulx, P. & Fung, C. K. Metabolism of phosphoglycerides in E. coli. IV. The positional specificity and properties of phospholipase A. Can. J. Biochem. 47, 1125–1128 (1969).

    Article  CAS  PubMed  Google Scholar 

  5. Roof, D. M. & Roth, J. R. Ethanolamine utilization in Salmonella typhimurium. J. Bacteriol. 170, 3855–3863 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chang, G. W. & Chang, J. T. Evidence for the B12-dependent enzyme ethanolamine deaminase in Salmonella. Nature 254, 150–151 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. Del Papa, M. F. & Perego, M. Ethanolamine activates a sensor histidine kinase regulating its utilization in Enterococcus faecalis. J. Bacteriol. 190, 7147–7156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blackwell, C. M., Scarlett, F. A. & Turner, J. M. Ethanolamine catabolism by bacteria, including Escherichia coli. Biochem. Soc. Trans. 4, 495–497 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Bradbeer, C. The clostridial fermentations of choline and ethanolamine. II. Requirement for a cobamide coenzyme by an ethanolamine deaminase. J. Biol. Chem. 240, 4675–4681 (1965).

    CAS  PubMed  Google Scholar 

  10. Bradbeer, C. The clostridial fermentations of choline and ethanolamine. 1. Preparation and properties of cell-free extracts. J. Biol. Chem. 240, 4669–4674 (1965).

    CAS  PubMed  Google Scholar 

  11. Jones, P. W. & Turner, J. M. Interrelationships between the enzymes of ethanolamine metabolism in Escherichia coli. J. Gen. Microbiol. 130, 299–308 (1984).

    CAS  PubMed  Google Scholar 

  12. Fox, K. A. et al. Multiple posttranscriptional regulatory mechanisms partner to control ethanolamine utilization in Enterococcus faecalis. Proc. Natl Acad. Sci. USA 106, 4435–4440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsoy, O., Ravcheev, D. & Mushegian, A. Comparative genomics of ethanolamine utilization. J. Bacteriol. 191, 7157–7164 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roof, D. M. & Roth, J. R. Functions required for vitamin B12-dependent ethanolamine utilization in Salmonella typhimurium. J. Bacteriol. 171, 3316–3323 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sheppard, D. E., Penrod, J. T., Bobik, T., Kofoid, E. & Roth, J. R. Evidence that a B12-adenosyl transferase is encoded within the ethanolamine operon of Salmonella enterica. J. Bacteriol. 186, 7635–7644 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stojiljkovic, I., Baumler, A. J. & Heffron, F. Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J. Bacteriol. 177, 1357–1366 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kofoid, E., Rappleye, C., Stojiljkovic, I. & Roth, J. The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J. Bacteriol. 181, 5317–5329 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yeates, T. O., Kerfeld, C. A., Heinhorst, S., Cannon, G. C. & Shively, J. M. Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nature Rev. Microbiol. 6, 681–691 (2008).

    Article  CAS  Google Scholar 

  19. Brinsmade, S. R., Paldon, T. & Escalante-Semerena, J. C. Minimal functions and physiological conditions required for growth of Salmonella enterica on ethanolamine in the absence of the metabolosome. J. Bacteriol. 187, 8039–8046 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Penrod, J. T. & Roth, J. R. Conserving a volatile metabolite: a role for carboxysome-like organelles in Salmonella enterica. J. Bacteriol. 188, 2865–2874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Scarlett, F. A. & Turner, J. M. Microbial metabolism of amino alcohols. Ethanolamine catabolism mediated by coenzyme B12-dependent ethanolamine ammonia lyase in Escherichia coli and Klebsiella aerogenes. J. Gen. Microbiol. 95, 173–176 (1976).

    Article  CAS  PubMed  Google Scholar 

  22. Buan, N. R., Suh, S. J. & Escalante-Semerena, J. C. The eutT gene of Salmonella enterica encodes an oxygen-labile, metal-containing ATP:corrinoid adenosyltransferase enzyme. J. Bacteriol. 186, 5708–5714 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brinsmade, S. R. & Escalante-Semerena, J. C. The eutD gene of Salmonella enterica encodes a protein with phosphotransacetylase enzyme activity. J. Bacteriol. 186, 1890–1892 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Starai, V. J., Garrity, J. & Escalante-Semerena, J. C. Acetate excretion during growth of Salmonella enterica on ethanolamine requires phosphotransacetylase (EutD) activity, and acetate recapture requires acetyl-CoA synthetase (Acs) and phosphotransacetylase (Pta) activities. Microbiology 151, 3793–3801 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Mori, K., Bando, R., Hieda, N. & Toraya, T. Identification of a reactivating factor for adenosylcobalamin-dependent ethanolamine ammonia lyase. J. Bacteriol. 186, 6845–6854 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Penrod, J. T., Mace, C. C. & Roth, J. R. A pH-sensitive function and phenotype: evidence that EutH facilitates diffusion of uncharged ethanolamine in Salmonella enterica. J. Bacteriol. 186, 6885–6890 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roof, D. M. & Roth, J. R. Autogenous regulation of ethanolamine utilization by a transcriptional activator of the eut operon in Salmonella typhimurium. J. Bacteriol. 174, 6634–6643 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blackwell, C. M. & Turner, J. M. Microbial metabolism of amino alcohols. Formation of coenzyme B12-dependent ethanolamine ammonia-lyase and its concerted induction in Escherichia coli. Biochem. J. 176, 751–757 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sheppard, D. E. & Roth, J. R. A rationale for autoinduction of a transcriptional activator: ethanolamine ammonia lyase (EutBC) and the operon activator (EutR) compete for adenosyl-cobalamin in Salmonella typhimurium. J. Bacteriol. 176, 1287–1296 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laub, M. T. & Goulian, M. Specificity in two-component signal transduction pathways. Annu. Rev. Genet. 41, 121–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Galperin, M. Y. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J. Bacteriol. 188, 4169–4182 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shu, C. J. & Zhulin, I. B. ANTAR: an RNA-binding domain in transcription antitermination regulatory proteins. Trends Biochem. Sci. 27, 3–5 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Chai, W. & Stewart, V. NasR, a novel RNA-binding protein, mediates nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader in vitro. J. Mol. Biol. 283, 339–351 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Chai, W. & Stewart, V. RNA sequence requirements for NasR-mediated, nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader. J. Mol. Biol. 292, 203–216 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Wilson, S. A., Wachira, S. J., Norman, R. A., Pearl, L. H. & Drew, R. E. Transcription antitermination regulation of the Pseudomonas aeruginosa amidase operon. EMBO J. 15, 5907–5916 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barrick, J. E. & Breaker, R. R. The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol. 8, R239 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Winkler, W. C. & Breaker, R. R. Regulation of bacterial gene expression by riboswitches. Annu. Rev. Microbiol. 59, 487–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Morth, J. P., Feng, V., Perry, L. J., Svergun, D. I. & Tucker, P. A. The crystal and solution structure of a putative transcriptional antiterminator from Mycobacterium tuberculosis. Structure 12, 1595–1605 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. O'Hara, B. P. et al. Crystal structure and induction mechanism of AmiC-AmiR: a ligand-regulated transcription antitermination complex. EMBO J. 18, 5175–5186 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cotton, P. B. Non-dietary lipid in the intestinal lumen. Gut 13, 675–681 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Toledo-Arana, A. et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature 459, 950–956 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Berka, R. M. & Vasil, M. L. Phospholipase C (heat-labile hemolysin) of Pseudomonas aeruginosa: purification and preliminary characterization. J. Bacteriol. 152, 239–245 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lema, G., Dryja, D., Vargas, I. & Enhorning, G. Pseudomonas aeruginosa from patients with cystic fibrosis affects function of pulmonary surfactant. Pediatr. Res. 47, 121–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lawhon, S. D. et al. Global regulation by CsrA in Salmonella typhimurium. Mol. Microbiol. 48, 1633–1645 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Kelly, A. et al. A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium. Microbiology 150, 2037–2053 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Bourgogne, A., Hilsenbeck, S. G., Dunny, G. M. & Murray, B. E. Comparison of OG1RF and an isogenic fsrB deletion mutant by transcriptional analysis: the Fsr system of Enterococcus faecalis is more than the activator of gelatinase and serine protease. J. Bacteriol. 188, 2875–2884 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garsin, D. A. et al. A simple model host for identifying Gram-positive virulence factors. Proc. Natl Acad. Sci. USA 98, 10892–10897 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maadani, A., Fox, K. A., Mylonakis, E. & Garsin, D. A. Enterococcus faecalis mutations affecting virulence in the C. elegans model host. Infect. Immun. 75, 2634–2637 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Joseph, B. et al. Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J. Bacteriol. 188, 556–568 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Munch, A., Stingl, L., Jung, K. & Heermann, R. Photorhabdus luminescens genes induced upon insect infection. BMC Genomics 9, 229 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yang, S. et al. Genome-wide identification of plant-upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array. Mol. Plant Microbe Interact. 17, 999–1008 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Forouhar, F. et al. Functional insights from structural genomics. J. Struct. Funct. Genomics 8, 37–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Sagermann, M., Ohtaki, A. & Nikolakakis, K. Crystal structure of the EutL shell protein of the ethanolamine ammonia lyase microcompartment. Proc. Natl Acad. Sci. USA 106, 8883–8887 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tanaka, S., Sawaya, M. R. & Yeates, T. O. Structure and mechanisms of a protein-based organelle in Escherichia coli. Science 327, 81–84 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank W. C. Winkler and K. A. Fox for critical reading of the manuscript. This work was funded by the US National Institute of Allergy and Infectious Diseases (award R21AI078104).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Caenorhabditis elegans

Enterococcus faecalis

Erwinia chrysanthemi

Escherichia coli

Heterorhabditis bacteriophora

Klebsiella pneumoniae

Listeria monocytogenes

Mycobacterium tuberculosis

Photorhabdus luminescens

Pseudomonas aeruginosa

Pseudomonas fluorescens

Salmonella enterica subsp. enterica serovar Typhimurium

FURTHER INFORMATION

Danielle A. Garsin's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garsin, D. Ethanolamine utilization in bacterial pathogens: roles and regulation. Nat Rev Microbiol 8, 290–295 (2010). https://doi.org/10.1038/nrmicro2334

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2334

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing