Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intronic RNAs mediate EZH2 regulation of epigenetic targets

Abstract

Epigenetic deregulation at a number of genomic loci is one of the hallmarks of cancer. A role for some RNA molecules in guiding repressive polycomb complex PRC2 to specific chromatin regions has been proposed. Here we use an in vivo cross-linking method to detect and identify direct PRC2-RNA interactions in human cancer cells, revealing a number of intronic RNA sequences capable of binding to the core component EZH2 and regulating the transcriptional output of its genomic counterpart. Overexpression of EZH2-bound intronic RNA for the H3K4 methyltransferase gene SMYD3 is concomitant with an increase in EZH2 occupancy throughout the corresponding genomic fragment and is sufficient to reduce levels of the endogenous transcript and protein, resulting in reduced growth capability in cell culture and animal models. These findings reveal the role of intronic RNAs in fine-tuning gene expression regulation at the level of transcriptional control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CLIP identifies a number of EZH2-interacting RNAs from within the introns of chromatin modifier genes.
Figure 2: CLIP-tag RNAs reveal chromatin-binding sites for EZH2 and reveal transcriptionally repressed gene targets.
Figure 3: Overexpression of intronic RNA CLIP tags downregulate endogenous gene expression through a mechanism that requires EZH2.
Figure 4: SMYD3 1-kb intronic sequence alone is capable of reducing proliferation in in vivo assays.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer 6, 846–856 (2006).

    Article  CAS  Google Scholar 

  2. Buchwald, G. et al. Structure and E3-ligase activity of the Ring–Ring complex of polycomb proteins Bmi1 and Ring1b. EMBO J. 25, 2465–2474 (2006).

    Article  CAS  Google Scholar 

  3. Elderkin, S. et al. A phosphorylated form of Mel-18 targets the Ring1B histone H2A ubiquitin ligase to chromatin. Mol. Cell 28, 107–120 (2007).

    Article  CAS  Google Scholar 

  4. Schuettengruber, B. et al. Genome regulation by polycomb and trithorax proteins. Cell 128, 735–745 (2007).

    Article  CAS  Google Scholar 

  5. Bracken, A.P. & Helin, K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat. Rev. Cancer 9, 773–784 (2009).

    Article  CAS  Google Scholar 

  6. Simon, J.A. & Lange, C.A. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat. Res. 647, 21–29 (2008).

    Article  CAS  Google Scholar 

  7. Yu, J. et al. Integrative genomics analysis reveals silencing of β-adrenergic signaling by polycomb in prostate cancer. Cancer Cell 12, 419–431 (2007).

    Article  CAS  Google Scholar 

  8. Taniguchi, H. et al. Silencing of Kruppel-like factor 2 by the histone methyltransferase EZH2 in human cancer. Oncogene 31, 1988–1994 (2012).

    Article  CAS  Google Scholar 

  9. Peng, J.C. et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139, 1290–1302 (2009).

    Article  Google Scholar 

  10. Shen, X. et al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 139, 1303–1314 (2009).

    Article  Google Scholar 

  11. Li, G. et al. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24, 368–380 (2010).

    Article  Google Scholar 

  12. Pasini, D. et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464, 306–310 (2010).

    Article  CAS  Google Scholar 

  13. Landeira, D. et al. Jarid2 is a PRC2 component in embryonic stem cells required for multilineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nat. Cell Biol. 12, 618–624 (2010).

    Article  CAS  Google Scholar 

  14. El Messaoudi–Aubert, S. et al. Role for the MOV10 RNA helicase in Polycomb-mediated repression of the INK4a tumor suppressor. Nat. Struct. Mol. Biol. 17, 862–868 (2010).

    Article  Google Scholar 

  15. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    Article  CAS  Google Scholar 

  16. Rinn, J.L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  Google Scholar 

  17. Zhao, J. et al. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  CAS  Google Scholar 

  18. Khalil, A.M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 106, 11667–11672 (2009).

    Article  CAS  Google Scholar 

  19. Kanhere, A. et al. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol. Cell 38, 675–688 (2010).

    Article  CAS  Google Scholar 

  20. Tsai, M.C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    Article  CAS  Google Scholar 

  21. Cabili, M.N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927 (2011).

    Article  CAS  Google Scholar 

  22. Wang, K.C. & Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011).

    Article  CAS  Google Scholar 

  23. Mercer, T.R. et al. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10, 155–159 (2009).

    Article  CAS  Google Scholar 

  24. Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874 (2011).

    Article  CAS  Google Scholar 

  25. Gupta, R.A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    Article  CAS  Google Scholar 

  26. Kogo, R. et al. Long non-coding RNA HOTAIR regulates Polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 71, 6320–6326 (2011).

    Article  CAS  Google Scholar 

  27. Chu, C. et al. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 44, 667–678 (2011).

    Article  CAS  Google Scholar 

  28. Yu, W. et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202–206 (2008).

    Article  CAS  Google Scholar 

  29. Yap, K.L. et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38, 662–674 (2010).

    Article  CAS  Google Scholar 

  30. Lee, J.T. Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev. 23, 1831–1842 (2009).

    Article  CAS  Google Scholar 

  31. Augui, S., Nora, E.P. & Heard, E. Regulation of the X-chromosome inactivation by the X-inactivation centre. Nat. Rev. Genet. 12, 429–442 (2011).

    Article  CAS  Google Scholar 

  32. Kaneko, S. et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNAs. Genes Dev. 24, 2615–2620 (2010).

    Article  CAS  Google Scholar 

  33. Ule, J., Jensen, K., Mele, A. & Darnell, R.B. CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37, 376–386 (2005).

    Article  CAS  Google Scholar 

  34. König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  Google Scholar 

  35. Kotake, Y. et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene 30, 1956–1962 (2011).

    Article  CAS  Google Scholar 

  36. Kirmizis, A. et al. Silencing of human polycomb target genes is associated with methylation of histone H3Lys27. Genes Dev. 18, 1592–1605 (2004).

    Article  CAS  Google Scholar 

  37. Zhao, J. et al. Genome-wide identification of Polycomb-associated RNAs by RIP-seq. Mol. Cell 40, 939–953 (2010).

    Article  CAS  Google Scholar 

  38. Dermitzakis, E.T., Reymond, A. & Antonarakis, S.E. Conserved non-genic sequences—an unexpected feature of mammalian genomes. Nat. Rev. Genet. 6, 151–157 (2005).

    Article  CAS  Google Scholar 

  39. Rearick, D. et al. Critical association of ncRNA with introns. Nucleic Acids Res. 39, 2357–2366 (2011).

    Article  CAS  Google Scholar 

  40. Valen, E. et al. Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes. Nat. Struct. Mol. Biol. 18, 1075–1082 (2011).

    Article  CAS  Google Scholar 

  41. Louro, R. et al. Conserved tissue expression signatures of intronic noncoding RNAs transcribed from human and mouse loci. Genomics 92, 18–25 (2008).

    Article  CAS  Google Scholar 

  42. Nakaya, H.I. et al. Genome mapping and expression analyses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription. Genome Biol. 8, R43 (2007).

    Article  Google Scholar 

  43. Hill, A.E. et al. Micro-RNA-like effects of complete intronic sequences. Front. Biosci. 11, 1998–2006 (2006).

    Article  CAS  Google Scholar 

  44. Heo, J.B. & Sung, S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76–79 (2011).

    Article  CAS  Google Scholar 

  45. Luco, R.F. et al. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011).

    Article  CAS  Google Scholar 

  46. Shukla, S. et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74–79 (2011).

    Article  CAS  Google Scholar 

  47. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    Article  CAS  Google Scholar 

  48. Boyer, L.A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  Google Scholar 

  49. Lee, T.I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  Google Scholar 

  50. Mikkelsen, T.S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cell. Nature 448, 553–560 (2007).

    Article  CAS  Google Scholar 

  51. Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008).

    Article  CAS  Google Scholar 

  52. Hamamoto, R. et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol. 6, 731–740 (2004).

    Article  CAS  Google Scholar 

  53. Hamamoto, R. et al. Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci. 97, 113–118 (2006).

    Article  CAS  Google Scholar 

  54. Chase, A. & Cross, N.C. Aberrations of EZH2 in cancer. Clin. Cancer Res. 17, 2613–2618 (2011).

    Article  CAS  Google Scholar 

  55. Huarte, M. et al. A large intergenic non-coding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409–419 (2010).

    Article  CAS  Google Scholar 

  56. Kino, T. et al. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal. 3, ra8 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Wang, X. et al. Induced ncRNA allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454, 126–130 (2008).

    Article  CAS  Google Scholar 

  58. Caputi, M., Mayeda, A., Krainer, A.R. & Zahler, A.M. hnRNP A/B proteins are required for inhibition of HIV-1 pre-mRNA splicing. EMBO J. 18, 4060–4067 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministerio de Ciencia e Innovación (MICINN), grant numbers BFU2008-04131 (S.G.) and SAF2011-22803 (M.E.), the European Research Council (ERC) Epigenetic Disruption of Non-Coding RNAs in Human Cancer (EPINORC) Advanced grant (to M.E.), Cellex Foundation, the Health and Science Departments of the Catalan Government (Generalitat de Catalunya) and Fondo de Investigaciones Sanitarias grant PI08-1345 (M.E.). S.G. is funded by the Ramón y Cajal Research Program (MICINN). A.P. is a Sara Borrell postdoctoral fellow. M.E. is an ICREA Research Professor.

Author information

Authors and Affiliations

Authors

Contributions

S.G., M.E., M.S., J.C., A.P. and A.V. designed the experiments. S.G., M.S., J.C., A.P., E.F. and A.V. conducted the experiments. A.G. carried out the CLIP–seq bioinformatics analysis. M.E. and S.G. evaluated the results and wrote the manuscript.

Corresponding authors

Correspondence to Sònia Guil or Manel Esteller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1 and 2 (PDF 1041 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guil, S., Soler, M., Portela, A. et al. Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol 19, 664–670 (2012). https://doi.org/10.1038/nsmb.2315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2315

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer