Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcriptional regulation by Polycomb group proteins

Abstract

Polycomb group (PcG) proteins are epigenetic regulators of transcription that have key roles in stem-cell identity, differentiation and disease. Mechanistically, they function within multiprotein complexes, called Polycomb repressive complexes (PRCs), which modify histones (and other proteins) and silence target genes. The dynamics of PRC1 and PRC2 components has been the focus of recent research. Here we discuss our current knowledge of the PRC complexes, how they are targeted to chromatin and how the high diversity of the PcG proteins allows these complexes to influence cell identity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Composition and function of the main Polycomb complexes.
Figure 2: Role of PcG proteins in determination of stem-cell fate.
Figure 3: Polycomb-mediated gene repression is a multilayer process.
Figure 4: Targeting of PRCs.

Similar content being viewed by others

References

  1. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Musselman, C.A., Lalonde, M.E., Cote, J. & Kutateladze, T.G. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19, 1218–1227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lewis, E.B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. Hansen, K.H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol. 10, 1291–1300 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Petruk, S. et al. TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150, 922–933 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sauvageau, M. & Sauvageau, G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7, 299–313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aloia, L., Di Stefano, B. & Di Croce, L. Polycomb complexes in stem cells and embryonic development. Development 140, 2525–2534 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Luis, N.M. et al. Regulation of human epidermal stem cell proliferation and senescence requires polycomb-dependent and -independent functions of Cbx4. Cell Stem Cell 9, 233–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Richly, H., Aloia, L. & Di Croce, L. Roles of the Polycomb group proteins in stem cells and cancer. Cell Death Dis. 2, e204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bracken, A.P. & Helin, K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat. Rev. Cancer 9, 773–784 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Levine, S.S. et al. The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol. Cell Biol. 22, 6070–6078 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Margueron, R. et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell 32, 503–518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shen, X. et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 32, 491–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao, R., Tsukada, Y. & Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell 20, 845–854 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344–356 (2012).Defines functionally different PRC1 complexes in HeLa and mouse ES cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Farcas, A.M. et al. KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. eLife 1, e00205 (2012).Shows, together with ref. 23, that KDM2B (FBXL10) recruits a noncanonical, H2AK119-ubiquitinating PRC1 complex to CpG islands.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gearhart, M.D., Corcoran, C.M., Wamstad, J.A. & Bardwell, V.J. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol. Cell Biol. 26, 6880–6889 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lagarou, A. et al. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing. Genes Dev. 22, 2799–2810 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D.M. & Nakatani, Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296, 1132–1136 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Sánchez, C. et al. Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Mol. Cell Proteomics 6, 820–834 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. Tavares, L. et al. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148, 664–678 (2012).Shows that RYBP-PRC1 complexes can mediate H2A ubiquitination independently of H3K27me3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, X., Johansen, J.V. & Helin, K. Fbxl10/Kdm2b recruits Polycomb Repressive Complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell 49, 1134–1146 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Morey, L. et al. Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell 10, 47–62 (2012).Refs. 24–26 show that various canonical and noncanonical PRC1 complexes assemble and disassemble to balance pluripotency and lineage commitment.

    Article  CAS  PubMed  Google Scholar 

  25. O'Loghlen, A. et al. MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem Cell 10, 33–46 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morey, L., Aloia, L., Cozzuto, L., Benitah, S.A. & Di Croce, L. RYBP and Cbx7 define specific biological functions of Polycomb complexes in mouse embryonic stem cells. Cell Rep 3, 60–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 38, 452–464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, M.G. et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318, 447–450 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Wu, X. et al. Cooperation between EZH2, NSPc1-mediated histone H2A ubiquitination and Dnmt1 in HOX gene silencing. Nucleic Acids Res. 36, 3590–3599 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Attwooll, C. et al. A novel repressive E2F6 complex containing the polycomb group protein, EPC1, that interacts with EZH2 in a proliferation-specific manner. J. Biol. Chem. 280, 1199–1208 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Storre, J. et al. Homeotic transformations of the axial skeleton that accompany a targeted deletion of E2f6. EMBO Rep. 3, 695–700 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scheuermann, J.C. et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465, 243–247 (2010).Defines a complex containing Drosophila Calypso (human BAP1) and ASX (human ASXL1–ASXL 3) binding to PcG-target genes and having H2A deubiquitination activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abdel-Wahab, O. et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 22, 180–193 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dey, A. et al. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 337, 1541–1546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bott, M. et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat. Genet. 43, 668–672 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shih, A.H., Abdel-Wahab, O., Patel, J.P. & Levine, R.L. The role of mutations in epigenetic regulators in myeloid malignancies. Nat. Rev. Cancer 12, 599–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Francis, N.J., Kingston, R.E. & Woodcock, C.L. Chromatin compaction by a polycomb group protein complex. Science 306, 1574–1577 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Sarma, K., Margueron, R., Ivanov, A., Pirrotta, V. & Reinberg, D. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol. Cell Biol. 28, 2718–2731 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bantignies, F. et al. Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144, 214–226 (2011).Refs. 39,40 report that Polycomb proteins and epigenetic modifications contribute to the three-dimensional organization of Drosophila chromosomes.

    Article  CAS  PubMed  Google Scholar 

  40. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Bantignies, F. & Cavalli, G. Polycomb group proteins: repression in 3D. Trends Genet. 27, 454–464 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Morey, L. et al. MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks. Mol. Cell Biol. 28, 5912–5923 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reynolds, N. et al. NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. EMBO J. 31, 593–605 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Levinger, L. & Varshavsky, A. Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome. Cell 28, 375–385 (1982).

    Article  CAS  PubMed  Google Scholar 

  45. Stock, J.K. et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat. Cell Biol. 9, 1428–1435 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Zhou, W. et al. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol. Cell 29, 69–80 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nakagawa, T. et al. Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation. Genes Dev. 22, 37–49 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Endoh, M. et al. Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet. 8, e1002774 (2012).Shows that Ring1-dependent H2A ubiquitination is required for efficient repression of PcG-target genes and ESC proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Richly, H. et al. Transcriptional activation of polycomb-repressed genes by ZRF1. Nature 468, 1124–1128 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Breiling, A., Turner, B.M., Bianchi, M.E. & Orlando, V. General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412, 651–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Saurin, A.J., Shao, Z., Erdjument-Bromage, H., Tempst, P. & Kingston, R.E. A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 412, 655–660 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Vermeulen, M. et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Brookes, E. et al. Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs. Cell Stem Cell 10, 157–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kanhere, A. et al. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol. Cell 38, 675–688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boyer, L.A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. O'Carroll, D. et al. The polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell Biol. 21, 4330–4336 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chamberlain, S.J., Yee, D. & Magnuson, T. Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells 26, 1496–1505 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pasini, D., Bracken, A.P., Jensen, M.R., Lazzerini Denchi, E. & Helin, K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23, 4061–4071 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Faust, C., Lawson, K.A., Schork, N.J., Thiel, B. & Magnuson, T. The Polycomb-group gene eed is required for normal morphogenetic movements during gastrulation in the mouse embryo. Development 125, 4495–4506 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Akasaka, T. et al. Mice doubly deficient for the Polycomb Group genes Mel18 and Bmi1 reveal synergy and requirement for maintenance but not initiation of Hox gene expression. Development 128, 1587–1597 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Isono, K. et al. Mammalian polyhomeotic homologues Phc2 and Phc1 act in synergy to mediate polycomb repression of Hox genes. Mol. Cell Biol. 25, 6694–6706 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Suzuki, M. et al. Involvement of the Polycomb-group gene Ring1B in the specification of the anterior-posterior axis in mice. Development 129, 4171–4183 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Voncken, J.W. et al. Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc. Natl. Acad. Sci. USA 100, 2468–2473 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. de Napoles, M. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7, 663–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. van der Stoop, P. et al. Ubiquitin E3 ligase Ring1b/Rnf2 of polycomb repressive complex 1 contributes to stable maintenance of mouse embryonic stem cells. PLoS ONE 3, e2235 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Leeb, M. & Wutz, A. Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells. J. Cell Biol. 178, 219–229 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Endoh, M. et al. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development 135, 1513–1524 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Ballaré, C. et al. Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nat. Struct. Mol. Biol. 19, 1257–1265 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Brien, G.L. et al. Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat. Struct. Mol. Biol. 19, 1273–1281 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Cai, L. et al. An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol. Cell 49, 571–582 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Musselman, C.A. et al. Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat. Struct. Mol. Biol. 19, 1266–1272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schwartz, Y.B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat. Genet. 38, 700–705 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Tolhuis, B. et al. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat. Genet. 38, 694–699 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Nègre, N. et al. Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biol. 4, e170 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Mendenhall, E.M. et al. GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet. 6, e1001244 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ku, M. et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 4, e1000242 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Vella, P., Barozzi, I., Cuomo, A., Bonaldi, T. & Pasini, D. Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells. Nucleic Acids Res. 40, 3403–3418 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Bracken, A.P., Dietrich, N., Pasini, D., Hansen, K.H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee, T.I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ren, X. & Kerppola, T.K. REST interacts with Cbx proteins and regulates polycomb repressive complex 1 occupancy at RE1 elements. Mol. Cell Biol. 31, 2100–2110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dietrich, N. et al. REST-mediated recruitment of polycomb repressor complexes in mammalian cells. PLoS Genet. 8, e1002494 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu, M. et al. Direct recruitment of polycomb repressive complex 1 to chromatin by core binding transcription factors. Mol. Cell 45, 330–343 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tanay, A., O'Donnell, A.H., Damelin, M. & Bestor, T.H. Hyperconserved CpG domains underlie Polycomb-binding sites. Proc. Natl. Acad. Sci. USA 104, 5521–5526 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lynch, M.D. et al. An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment. EMBO J. 31, 317–329 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Kim, H., Kang, K. & Kim, J. AEBP2 as a potential targeting protein for Polycomb Repression Complex PRC2. Nucleic Acids Res. 37, 2940–2950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Landeira, D. et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nat. Cell Biol. 12, 618–624 (2010).Refs. 86–90 show that JARID2 is associated with PRC2 and is involved in the recruitment of the complex to its target genes, for proper differentiation of mouse ESCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, G. et al. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24, 368–380 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Pasini, D. et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464, 306–310 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Peng, J.C. et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139, 1290–1302 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Shen, X. et al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 139, 1303–1314 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hunkapiller, J. et al. Polycomb-like 3 promotes polycomb repressive complex 2 binding to CpG islands and embryonic stem cell self-renewal. PLoS Genet. 8, e1002576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Walker, E. et al. Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 6, 153–166 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Arnold, P. et al. Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting. Genome Res. 23, 60–73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boukarabila, H. et al. The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. Genes Dev. 23, 1195–1206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Herranz, N. et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell Biol. 28, 4772–4781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Villa, R. et al. Role of the Polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 11, 513–525 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Silva, J. et al. Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev. Cell 4, 481–495 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Zhao, J., Sun, B.K., Erwin, J.A., Song, J.J. & Lee, J.T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rinn, J.L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pandey, R.R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Terranova, R. et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev. Cell 15, 668–679 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Khalil, A.M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 106, 11667–11672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhao, J. et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 40, 939–953 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brockdorff, N. Noncoding RNA and Polycomb recruitment. RNA 19, 429–442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Peters, A.H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Jung, H.R., Pasini, D., Helin, K. & Jensen, O.N. Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36. Mol. Cell. Proteomics 9, 838–850 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sneeringer, C.J. et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc. Natl. Acad. Sci. USA 107, 20980–20985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pengelly, A.R., Copur, O., Jackle, H., Herzig, A. & Muller, J. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science 339, 698–699 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4, 80–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank V.A. Raker for help in preparing the manuscript. This work was supported by grants from the Spanish 'Ministerio de Educación y Ciencia' (BFU2010-18692) to L.D.C.; from European Commission's 7th Framework Program 4DCellFate (grant number 277899) to L.D.C. and K.H.; and from the Novo Nordisk Foundation, the Danish Cancer Society and the Danish Council for Strategic Research (12-110503) to K.H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luciano Di Croce or Kristian Helin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Croce, L., Helin, K. Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 20, 1147–1155 (2013). https://doi.org/10.1038/nsmb.2669

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2669

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing