Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Caspase-independent cell death: leaving the set without the final cut

Abstract

Apoptosis is dependent upon caspase activation leading to substrate cleavage and, ultimately, cell death. Although required for the apoptotic phenotype, it has become apparent that cells frequently die even when caspase function is blocked. This process, termed caspase-independent cell death (CICD), occurs in response to most intrinsic apoptotic cues, provided that mitochondrial outer membrane permeabilization has occurred. Death receptor ligation can also trigger a form of CICD termed necroptosis. In this review, we will examine the molecular mechanisms governing CICD, highlight recent findings demonstrating recovery from conditions of CICD and discuss potential pathophysiological functions of these processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abraham MC, Lu Y, Shaham S . (2007). A morphologically conserved nonapoptotic program promotes linker cell death in Caenorhabditis elegans. Dev Cell 12: 73–86.

    CAS  PubMed  Google Scholar 

  • Arnoult D . (2007). Mitochondrial fragmentation in apoptosis. Trends Cell Biol 17: 6–12.

    CAS  PubMed  Google Scholar 

  • Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ . (2003). Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 22: 4385–4399.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahi N, Zhang J, Llovera M, Ballester M, Comella JX, Sanchis D . (2006). Switch from caspase-dependent to caspase-independent death during heart development: essential role of endonuclease G in ischemia-induced DNA processing of differentiated cardiomyocytes. J Biol Chem 281: 22943–22952.

    CAS  PubMed  Google Scholar 

  • Balsam LB, Kofidis T, Robbins RC . (2005). Caspase-3 inhibition preserves myocardial geometry and long-term function after infarction. J Surg Res 124: 194–200.

    CAS  PubMed  Google Scholar 

  • Berry DL, Baehrecke EH . (2007). Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131: 1137–1148.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braun JS, Prass K, Dirnagl U, Meisel A, Meisel C . (2007). Protection from brain damage and bacterial infection in murine stroke by the novel caspase-inhibitor Q-VD-OPH. Exp Neurol 206: 183–191.

    CAS  PubMed  Google Scholar 

  • Brown D, Yu BD, Joza N, Benit P, Meneses J, Firpo M et al. (2006). Loss of Aif function causes cell death in the mouse embryo, but the temporal progression of patterning is normal. Proc Natl Acad Sci USA 103: 9918–9923.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cauwels A, Janssen B, Waeytens A, Cuvelier C, Brouckaert P . (2003). Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Nat Immunol 4: 387–393.

    CAS  PubMed  Google Scholar 

  • Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P . (1998). Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94: 727–737.

    CAS  PubMed  Google Scholar 

  • Chan PH . (2004). Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem Res 29: 1943–1949.

    CAS  PubMed  Google Scholar 

  • Chautan M, Chazal G, Cecconi F, Gruss P, Golstein P . (1999). Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol 9: 967–970.

    CAS  PubMed  Google Scholar 

  • Chauvier D, Ankri S, Charriaut-Marlangue C, Casimir R, Jacotot E . (2007). Broad-spectrum caspase inhibitors: from myth to reality? Cell Death Differ 14: 387–391.

    CAS  PubMed  Google Scholar 

  • Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC . (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160: 189–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung EC, Joza N, Steenaart NA, McClellan KA, Neuspiel M, McNamara S et al. (2006). Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J 25: 4061–4073.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chipuk JE, Green DR . (2005). Do inducers of apoptosis trigger caspase-independent cell death? Nat Rev Mol Cell Biol 6: 268–275.

    CAS  PubMed  Google Scholar 

  • Chipuk JE, Green DR . (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18: 157–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L et al. (2007). GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129: 983–997.

    CAS  PubMed  Google Scholar 

  • Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB . (2008). Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18: 54–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10: 51–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X et al. (2008). Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4: 313–321.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1: 112–119.

    CAS  PubMed  Google Scholar 

  • Deming PB, Schafer ZT, Tashker JS, Potts MB, Deshmukh M, Kornbluth S . (2004). Bcr-Abl-mediated protection from apoptosis downstream of mitochondrial cytochrome c release. Mol Cell Biol 24: 10289–10299.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denmeade SR, Lin XS, Tombal B, Isaacs JT . (1999). Inhibition of caspase activity does not prevent the signaling phase of apoptosis in prostate cancer cells. Prostate 39: 269–279.

    CAS  PubMed  Google Scholar 

  • Deshmukh M, Du C, Wang X, Johnson Jr EM . (2002). Exogenous smac induces competence and permits caspase activation in sympathetic neurons. J Neurosci 22: 8018–8027.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmukh M, Johnson Jr EM . (1998). Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron 21: 695–705.

    CAS  PubMed  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X . (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33–42.

    CAS  PubMed  Google Scholar 

  • Ekert PG, Read SH, Silke J, Marsden VS, Kaufmann H, Hawkins CJ et al. (2004). Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. J Cell Biol 165: 835–842.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis HM, Horvitz HR . (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell 44: 817–829.

    CAS  PubMed  Google Scholar 

  • Fraser AG, McCarthy NJ, Evan GI . (1997). drICE is an essential caspase required for apoptotic activity in Drosophila cells. EMBO J 16: 6192–6199.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto A, Takeuchi H, Taback B, Hsueh EC, Elashoff D, Morton DL et al. (2004). Allelic imbalance of 12q22-23 associated with APAF-1 locus correlates with poor disease outcome in cutaneous melanoma. Cancer Res 64: 2245–2250.

    CAS  PubMed  Google Scholar 

  • Gasser SM, Daum G, Schatz G . (1982). Import of proteins into mitochondria. Energy-dependent uptake of precursors by isolated mitochondria. J Biol Chem 257: 13034–13041.

    CAS  PubMed  Google Scholar 

  • Goldstein JC, Kluck RM, Green DR . (2000). A single cell analysis of apoptosis. Ordering the apoptotic phenotype. Ann N Y Acad Sci 926: 132–141.

    CAS  PubMed  Google Scholar 

  • Green DR, Evan GI . (2002). A matter of life and death. Cancer Cell 1: 19–30.

    CAS  PubMed  Google Scholar 

  • Gustafsson AB, Gottlieb RA . (2008). Heart mitochondria: gates of life and death. Cardiovasc Res 77: 334–343.

    CAS  PubMed  Google Scholar 

  • Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS et al. (1998). Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94: 339–352.

    CAS  PubMed  Google Scholar 

  • Hao Z, Duncan GS, Chang CC, Elia A, Fang M, Wakeham A et al. (2005). Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis. Cell 121: 579–591.

    CAS  PubMed  Google Scholar 

  • Haraguchi M, Torii S, Matsuzawa S, Xie Z, Kitada S, Krajewski S et al. (2000). Apoptotic protease activating factor 1 (Apaf-1)-independent cell death suppression by Bcl-2. J Exp Med 191: 1709–1720.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch T, Marchetti P, Susin SA, Dallaporta B, Zamzami N, Marzo I et al. (1997). The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene 15: 1573–1581.

    CAS  PubMed  Google Scholar 

  • Hoffarth S, Zitzer A, Wiewrodt R, Hahnel PS, Beyer V, Kreft A et al. (2008). pp32/PHAPI determines the apoptosis response of non-small-cell lung cancer. Cell Death Differ 15: 161–170.

    CAS  PubMed  Google Scholar 

  • Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S et al. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1: 489–495.

    CAS  PubMed  Google Scholar 

  • Horvitz HR . (2003). Nobel lecture. Worms, life and death. Biosci Rep 23: 239–303.

    CAS  PubMed  Google Scholar 

  • Jaattela M, Tschopp J . (2003). Caspase-independent cell death in T lymphocytes. Nat Immunol 4: 416–423.

    PubMed  Google Scholar 

  • Jia L, Srinivasula SM, Liu FT, Newland AC, Fernandes-Alnemri T, Alnemri ES et al. (2001). Apaf-1 protein deficiency confers resistance to cytochrome c-dependent apoptosis in human leukemic cells. Blood 98: 414–421.

    CAS  PubMed  Google Scholar 

  • Johnson CE, Huang YY, Parrish AB, Smith MI, Vaughn AE, Zhang Q et al. (2007). Differential Apaf-1 levels allow cytochrome c to induce apoptosis in brain tumors but not in normal neural tissues. Proc Natl Acad Sci USA 104: 20820–20825.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JM, Datta P, Srinivasula SM, Ji W, Gupta S, Zhang Z et al. (2003). Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 425: 721–727.

    CAS  PubMed  Google Scholar 

  • Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY et al. (2001). Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410: 549–554.

    CAS  PubMed  Google Scholar 

  • Kawahara A, Ohsawa Y, Matsumura H, Uchiyama Y, Nagata S . (1998). Caspase-independent cell killing by Fas-associated protein with death domain. J Cell Biol 143: 1353–1360.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P . (1998). The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8: 297–303.

    CAS  PubMed  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR . (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN et al. (2002). The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419: 367–374.

    CAS  PubMed  Google Scholar 

  • Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H et al. (1998). Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94: 325–337.

    CAS  PubMed  Google Scholar 

  • Lavrik I, Golks A, Krammer PH . (2005). Death receptor signaling. J Cell Sci 118: 265–267.

    CAS  PubMed  Google Scholar 

  • Leo C, Horn LC, Rauscher C, Hentschel B, Richter CE, Schutz A et al. (2007). Lack of apoptotic protease activating factor-1 expression and resistance to hypoxia-induced apoptosis in cervical cancer. Clin Cancer Res 13: 1149–1153.

    CAS  PubMed  Google Scholar 

  • Levine B, Kroemer G . (2008). Autophagy in the pathogenesis of disease. Cell 132: 27–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ et al. (2000). Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101: 389–399.

    CAS  PubMed  Google Scholar 

  • Li LY, Luo X, Wang X . (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412: 95–99.

    CAS  PubMed  Google Scholar 

  • Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA et al. (2000). The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6: 1389–1399.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzo HK, Susin SA, Penninger J, Kroemer G . (1999). Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 6: 516–524.

    CAS  PubMed  Google Scholar 

  • Lu M, Lin SC, Huang Y, Kang YJ, Rich R, Lo YC et al. (2007). XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell 26: 689–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinou I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S et al. (1999). The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol 144: 883–889.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Misaghi S, Korbel GA, Kessler B, Spooner E, Ploegh HL . (2006). z-VAD-fmk inhibits peptide:N-glycanase and may result in ER stress. Cell Death Differ 13: 163–165.

    CAS  PubMed  Google Scholar 

  • Munoz-Pinedo C, Guio-Carrion A, Goldstein JC, Fitzgerald P, Newmeyer DD, Green DR . (2006). Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc Natl Acad Sci USA 103: 11573–11578.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muro I, Berry DL, Huh JR, Chen CH, Huang H, Yoo SJ et al. (2006). The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process. Development 133: 3305–3315.

    CAS  PubMed  Google Scholar 

  • Ohta T, Kinoshita T, Naito M, Nozaki T, Masutani M, Tsuruo T et al. (1997). Requirement of the caspase-3/CPP32 protease cascade for apoptotic death following cytokine deprivation in hematopoietic cells. J Biol Chem 272: 23111–23116.

    CAS  PubMed  Google Scholar 

  • Okuno S, Shimizu S, Ito T, Nomura M, Hamada E, Tsujimoto Y et al. (1998). Bcl-2 prevents caspase-independent cell death. J Biol Chem 273: 34272–34277.

    CAS  PubMed  Google Scholar 

  • Potts PR, Singh S, Knezek M, Thompson CB, Deshmukh M . (2003). Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J Cell Biol 163: 789–799.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN et al. (2005). Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280: 20722–20729.

    CAS  PubMed  Google Scholar 

  • Revillion F, Pawlowski V, Hornez L, Peyrat JP . (2000). Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer. Eur J Cancer 36: 1038–1042.

    CAS  PubMed  Google Scholar 

  • Ricci JE, Munoz-Pinedo C, Fitzgerald P, Bailly-Maitre B, Perkins GA, Yadava N et al. (2004). Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117: 773–786.

    CAS  PubMed  Google Scholar 

  • Rozman-Pungercar J, Kopitar-Jerala N, Bogyo M, Turk D, Vasiljeva O, Stefe I et al. (2003). Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity. Cell Death Differ 10: 881–888.

    CAS  PubMed  Google Scholar 

  • Sanchis D, Mayorga M, Ballester M, Comella JX . (2003). Lack of Apaf-1 expression confers resistance to cytochrome c-driven apoptosis in cardiomyocytes. Cell Death Differ 10: 977–986.

    CAS  PubMed  Google Scholar 

  • Sarin A, Williams MS, Alexander-Miller MA, Berzofsky JA, Zacharchuk CM, Henkart PA . (1997). Target cell lysis by CTL granule exocytosis is independent of ICE/Ced-3 family proteases. Immunity 6: 209–215.

    CAS  PubMed  Google Scholar 

  • Sasaki H, Sheng Y, Kotsuji F, Tsang BK . (2000). Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res 60: 5659–5666.

    CAS  PubMed  Google Scholar 

  • Schafer ZT, Kornbluth S . (2006). The apoptosome: physiological, developmental, and pathological modes of regulation. Dev Cell 10: 549–561.

    CAS  PubMed  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW . (2002). Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1: 289–298.

    CAS  PubMed  Google Scholar 

  • Scott CL, Schuler M, Marsden VS, Egle A, Pellegrini M, Nesic D et al. (2004). Apaf-1 and caspase-9 do not act as tumor suppressors in myc-induced lymphomagenesis or mouse embryo fibroblast transformation. J Cell Biol 164: 89–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soengas MS, Alarcon RM, Yoshida H, Giaccia AJ, Hakem R, Mak TW et al. (1999). Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284: 156–159.

    CAS  PubMed  Google Scholar 

  • Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X et al. (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409: 207–211.

    CAS  PubMed  Google Scholar 

  • Stefanis L . (2005). Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury. Neuroscientist 11: 50–62.

    CAS  PubMed  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441–446.

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R . (2001). A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8: 613–621.

    CAS  PubMed  Google Scholar 

  • Tamm I, Richter S, Scholz F, Schmelz K, Oltersdorf D, Karawajew L et al. (2004). XIAP expression correlates with monocytic differentiation in adult de novo AML: impact on prognosis. Hematol J 5: 489–495.

    CAS  PubMed  Google Scholar 

  • Taylor RC, Cullen SP, Martin SJ . (2008). Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9: 231–241.

    CAS  PubMed  Google Scholar 

  • Temkin V, Huang Q, Liu H, Osada H, Pope RM . (2006). Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol Cell Biol 26: 2215–2225.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N et al. (2004). AIF deficiency compromises oxidative phosphorylation. EMBO J 23: 4679–4689.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vande Walle L, Lamkanfi M, Vandenabeele P . (2008). The mitochondrial serine protease HtrA2/Omi: an overview. Cell Death Differ 15: 453–460.

    CAS  PubMed  Google Scholar 

  • Varkey J, Chen P, Jemmerson R, Abrams JM . (1999). Altered cytochrome c display precedes apoptotic cell death in Drosophila. J Cell Biol 144: 701–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W et al. (1998). Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187: 1477–1485.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE et al. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 43–53.

    CAS  PubMed  Google Scholar 

  • Waterhouse NJ, Finucane DM, Green DR, Elce JS, Kumar S, Alnemri ES et al. (1998). Calpain activation is upstream of caspases in radiation-induced apoptosis. Cell Death Differ 5: 1051–1061.

    CAS  PubMed  Google Scholar 

  • Wilkinson JC, Cepero E, Boise LH, Duckett CS . (2004). Upstream regulatory role for XIAP in receptor-mediated apoptosis. Mol Cell Biol 24: 7003–7014.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf BB, Schuler M, Li W, Eggers-Sedlet B, Lee W, Tailor P et al. (2001). Defective cytochrome c-dependent caspase activation in ovarian cancer cell lines due to diminished or absent apoptotic protease activating factor-1 activity. J Biol Chem 276: 34244–34251.

    CAS  PubMed  Google Scholar 

  • Xiang J, Chao DT, Korsmeyer SJ . (1996). BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci U S A 93: 14559–14563.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K et al. (1999). XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J 18: 179–187.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R et al. (1998). Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94: 739–750.

    CAS  PubMed  Google Scholar 

  • Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S et al. (2004). Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304: 1500–1502.

    CAS  PubMed  Google Scholar 

  • Yu L, Strandberg L, Lenardo MJ . (2008). The selectivity of autophagy and its role in cell death and survival. Autophagy 4: 567–573.

    PubMed  Google Scholar 

  • Zermati Y, Mouhamad S, Stergiou L, Besse B, Galluzzi L, Boehrer S et al. (2007). Nonapoptotic role for Apaf-1 in the DNA damage checkpoint. Mol Cell 28: 624–637.

    CAS  PubMed  Google Scholar 

  • Zimmermann KC, Ricci JE, Droin NM, Green DR . (2002). The role of ARK in stress-induced apoptosis in Drosophila cells. J Cell Biol 156: 1077–1087.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zlobec I, Minoo P, Baker K, Haegert D, Khetani K, Tornillo L et al. (2007). Loss of APAF-1 expression is associated with tumour progression and adverse prognosis in colorectal cancer. Eur J Cancer 43: 1101–1107.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Christopher Dillon for reviewing the manuscript and Jacqueline Tait-Mulder for help in producing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D R Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tait, S., Green, D. Caspase-independent cell death: leaving the set without the final cut. Oncogene 27, 6452–6461 (2008). https://doi.org/10.1038/onc.2008.311

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.311

Keywords

This article is cited by

Search

Quick links