Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Apoptotic signaling by c-MYC

Abstract

c-MYC has a pivotal function in growth control, differentiation and apoptosis, and its abnormal expression is associated with many tumors. Overexpression of c-MYC sensitizes cells to apoptosis by a variety of stimuli. The decision of a cell to undergo apoptosis and how this apoptotic response is regulated by c-MYC depends on the specific cell type and the physiological status of the cell. Multiple cooperating molecular pathways of cell survival and apoptosis determine whether a cell lives or dies, and understanding how c-MYC interfaces with these pathways to influence the survival of cells is important to understand normal and abnormal development, tumor initiation and progression, and response of tumors to different treatment regimens. This article will provide an overview of the function of the tumor suppressor gene product p53 in the c-MYC-mediated apoptotic response and how c-MYC amplifies the intrinsic mitochondrial pathway and triggers and/or amplifies the death receptor pathways. Finally, a model for how deregulated c-MYC prematurely triggers the normal apoptotic response associated with terminal myeloid differentiation while also blocking the differentiation program is presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S et al. (1985). The c-Myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318: 533–538.

    Article  CAS  PubMed  Google Scholar 

  • Adams JM, Harris AW, Strasser A, Ogilvy S, Cory S . (1999). Transgenic models of lymphoid neoplasia and development of a pan-hematopoietic vector. Oncogene 18: 5268–5277.

    CAS  PubMed  Google Scholar 

  • Adrain C, Martin SJ . (2006). Cell biology: double knockout blow for caspases. Science 311: 785–786.

    CAS  PubMed  Google Scholar 

  • Amanullah A, Liebermann DA, Hoffman B . (2000). p53-independent apoptosis associated with c-Myc-mediated block in myeloid cell differentiation. Oncogene 19: 2967–2977.

    CAS  PubMed  Google Scholar 

  • Amanullah A, Liebermann DA, Hoffman B . (2002). Deregulated c-Myc prematurely recruits both type I and II CD95/Fas apoptotic pathways associated with terminal myeloid differentiation. Oncogene 21: 1600–1610.

    CAS  PubMed  Google Scholar 

  • Amati B, Land H . (1994). Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death. Curr Opin Gene Dev 4: 102–108.

    CAS  Google Scholar 

  • Amente S, Gargano B, Varrone F, Ruggiero L, Dominguez-Sola D, Lania L et al. (2006). p14ARF directly interacts with Myc through the Myc BoxII domain. Cancer Biol Ther 5: 287–291.

    CAS  PubMed  Google Scholar 

  • Amundson SA, Zhan Q, Penn LZ, Fornace Jr AJ . (1998). Myc suppresses induction of the growth arrest genes gadd34, gadd45, and gadd153 by DNA-damaging agents. Oncogene 17: 2149–2154.

    CAS  PubMed  Google Scholar 

  • Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JA, Penn LZ, Leber B et al. (2005). Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBOJ 24: 2096–2103.

    CAS  Google Scholar 

  • Askew DS, Ashmun RA, Simmons B, Cleveland JL . (1991). Constitutive c-Myc expression in an IL-3 dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6: 1915–1922.

    CAS  PubMed  Google Scholar 

  • Askew DS, Ihle JN, Cleveland JL . (1993). Activation of apoptosis associated with enforced Myc expression in myeloid progenitor cells is dominant to the suppression of apoptosis by interleukin-3 or erythropoietin. Blood 82: 2079–2087.

    CAS  PubMed  Google Scholar 

  • Baudino TA, Cleveland JL . (2001). The max network gone mad. Mol Cell Biol 21: 691–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchard C, Lee S, Laulus-Hock V, Loddenkemper C, Eilers M, Schmitt CA . (2007). FoxO transcription factors suppress Myc-driven lymphomagenesis via direct activation of Arf. Gene Dev 21: 2775–2787.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner T, Kasibhatla S, Pinkoski MJ, Frutschi C, Yoo NJ, Echeverri F et al. (2000). Expression of Fas ligand in activated T cells is regulated by c-Myc. J Biol Chem 275: 9767–9772.

    CAS  PubMed  Google Scholar 

  • Cao X, Bennett RL, May WS . (2008). c-Myc and caspase-2 are involved in activating Bax during cytotoxic drug-induced apoptosis. J Biol Chem 283: 14490–14496.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavarretta IT, Neuwirt H, Untergasser G, Moser PL, Zaki MH, Steiner H et al. (2007). The antiapoptotic effect of IL-6 autocrine loop in a cellular model of advanced prostate cancer is mediated by Mcl-1. Oncogene 26: 2822–2832.

    CAS  PubMed  Google Scholar 

  • Corn PG, El-Deiry WS . (2007). Microassay analysis of p-53-dependent gene expression in response to hypoxia and DNA damage. Cancer Biol Ther 6: 1858–1866.

    CAS  PubMed  Google Scholar 

  • Conzen SD, Gottlob K, Kandel ES, Khanduri P, Wagner A, O'Leary M et al. (2000). Induction of cell cycle progression and acceleration of apoptosis are two separable functions of c-Myc: transrepression correlates with acceleration of apoptosis. Mol Cell Biol 20: 6008–6018.

    CAS  PubMed  PubMed Central  Google Scholar 

  • D'Angelo S, Liebermann DA, Hoffman B . (2008). The c-Myc apoptotic response is not intrinsic to blocking terminal myeloid differentiation. J Cell Physiol 21: 120–127.

    Google Scholar 

  • Dang CV, O'Donell KA, Zeller KI, Nguyen T, Osthus RC, Li F . (2006). The c-Myc target gene network. Semin Cancer Biol 16: 253–264.

    CAS  PubMed  Google Scholar 

  • Dang CV, O'Donnell KA, Juopperi T . (2005). The great Myc escape in tumorigenesis. Cancer Cell 8: 177–178.

    CAS  PubMed  Google Scholar 

  • Dansen TB, Whitfield J, Rostker F, Brown-Swigart L, Evan GI . (2006). Specific requirement for Bax, not Bak, in Myc-induced apoptosis and tumor suppression in vivo. J Biol Chem 281: 10890–10895.

    CAS  PubMed  Google Scholar 

  • Egle A, Harris AW, Bouillet P, Cory S . (2004). Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci USA 101: 6164–6169.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eischen CM, Packham G, Nip J, Fee BE, Hiebert SW, Zambetti GP et al. (2001b). Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1. Oncogene 20: 6983–6993.

    CAS  PubMed  Google Scholar 

  • Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL . (1999). Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13: 2658–2669.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eischen CM, Woo D, Roussel MF, Cleveland JL . (2001a). Apoptosis triggered by Myc-induced suppression of Bcl-X(L) or Bcl-2 is bypassed during lymphomagenesis. Mol Cell Biol 21: 5063–5070.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenman RN . (2000). The max network: coordinated transcriptional regulation of cell growth and proliferation. Harvey Lect 96: 1–32.

    PubMed  Google Scholar 

  • Evan GI, Littlewood TD . (1993). The role of c-Myc in cell growth. Curr Opin Genet Dev 3: 44–49.

    CAS  PubMed  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M et al. (1992). Induction of apoptosis in fibroblasts by c-Myc protein. Cell 69: 119–128.

    CAS  PubMed  Google Scholar 

  • Felsher DW, Bishop JM . (1999). Transient excess of Myc activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci USA 96: 3940–3944.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P . (2007). RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ 14: 400–410.

    CAS  PubMed  Google Scholar 

  • Francois S, El Benna J, Dang PM, Pedruzzi E, Gougerot-Pocidalo MA, Elbim C . (2005). Inhibition of neutrophil apoptosis by TLR agonists in whole blood: involvement of the phosphoinositide 3-kinase/Akt and NF-kappaB signaling pathways, leading to increased levels of Mcl-1, A1, and phosphorylated Bad. J Immunol 174: 3633–3642.

    CAS  PubMed  Google Scholar 

  • Gartel AL, Shchors K . (2003). Mechanisms of c-Myc-mediated transcriptional repression of growth arrest genes. Exp Cell Res 283: 17–21.

    CAS  PubMed  Google Scholar 

  • Guillouf C, Grana X, Selvakumaran M, Giordano A, Hoffman B, Liebermann DA . (1995). Dissection of the genetic programs of 53-mediated G1 growth arrest and apoptosis: Blocking p53-induced apoptosis unmasks G1 arrest. Blood 85: 2691–2698.

    CAS  PubMed  Google Scholar 

  • Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C et al. (2005). Evasion of the p53 tumour surveillance network by tumour-derived Myc mutants. Nature 436: 807–811.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henriksson M, Luscher B . (1996). Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res 68: 109–182.

    CAS  PubMed  Google Scholar 

  • Hermeking H, Eick D . (1994). Mediation of c-Myc-induced apoptosis by p53. Science 265: 2091–2093.

    CAS  PubMed  Google Scholar 

  • Ho JS, Ma W, Mao DY, Benchimol S . (2005). p53-dependent transcriptional repression of c-Myc is required for G1 cell cycle arrest. Mol Cell Biol 25: 7423–7431.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman B, Anamullah A, Shafarenko M, Liebermann DA . (2002). The proto-oncogene c-Myc in hematopoietic development and leukemogenesis. Oncogene 21: 3414–3421.

    CAS  PubMed  Google Scholar 

  • Hoffman B, Liebermann DA . (1998). The proto-ocogene c-Myc and apoptosis. Oncogene 17: 3351–3357.

    PubMed  Google Scholar 

  • Hsu B, Marin MC, el-Naggar AK, Stephens LC, Brisbay S, McDonnell TJ . (1995). Evidence that c-Myc mediated apoptosis does not require wild-type p53 during lymphomagenesis. Oncogene 11: 175–179.

    CAS  PubMed  Google Scholar 

  • Hueber AO, Zornig M, Lyon D, Suda T, Nagata S, Evan GI . (1997). Requirement for the CD95 receptor-ligand pathway in c-Myc-induced apoptosis. Science 278: 1246–1247.

    Google Scholar 

  • Hurlin PJ, Huang J . (2006). The MAX-interacting transcription factor network. Semin Cancer Biol 16: 265–274.

    CAS  PubMed  Google Scholar 

  • Iaccarino I, Hancock D, Evan G, Downward J . (2003). c-Myc induces cytochrome c release in Rat1 fibroblasts by increasing outer mitochondrial membrane permeability in a Bid-dependent manner. Cell Death Differ 10: 599–608.

    CAS  PubMed  Google Scholar 

  • Jiang X, Tsang YH, Yu Q . (2007). c-Myc overexpression sensitizes Bim-mediated Bax activation for apoptosis induced by histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) through regulating Bcl-2/Bcl-xL expression. Int J Biochem Cell Biol 39: 1016–1025.

    CAS  PubMed  Google Scholar 

  • Juin P, Hunt A, Littlewood T, Griffiths B, Swigart LB, Korsmeyer S et al. (2002). c-Myc functionally cooperates with Bax to induce apoptosis. Moll Cell Biol 22: 6158–6169.

    CAS  Google Scholar 

  • Kasibhatla S, Beere HM, Brunner T, Echeverri F, Green DR . (2000). A ‘non-canonical’ DNA-binding element mediates the response of the Fas-ligand promoter to c-Myc. Curr Biol 10: 1205–1208.

    CAS  PubMed  Google Scholar 

  • Kelly PN, Puthalakath H, Adams JM, Strsasser A . (2007). Endogenous bcl-2 is not required for the development of Emu-Myc-induced B-cell lymphoma. Blood 109: 4907–4913.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klefstrom J, Arighi E, Littlewood T, Jaattela M, Saksela E, Evan GI et al. (1997). Induction of TNF-sensitive cellular phenotype by c-Myc involves p53 and impaired NF-kappaB activation. EMBOJ 16: 7382–7392.

    CAS  Google Scholar 

  • Knoepfler PS . (2007). Myc goes global: new tricks for an old oncogene. Cancer Res 67: 5061–5063.

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Werneburg NW, Bronk SF, Kaufmann SH, Gores GJ . (2005). Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 128: 2054–2065.

    CAS  PubMed  Google Scholar 

  • Kreuz S, Siegmund D, Rumpf JJ, Samel D, Leverkus M, Janssen O . (2004). NFkappaB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J Cell Biol 166: 369–380.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lakhani SA, Masud A, Kuida K, Porter Jr GA, Booth CJ, Mehal WZ et al. (2006). Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311: 847–851.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liebermann DA, Hoffman B . (2002). Myeloid differentiation (MyD)/growth arrest DNA damage (GADD) genes in tumor suppression, immunity and inflammation. Leukemia 16: 527–541.

    CAS  PubMed  Google Scholar 

  • Lindemans CA, Coffer PJ, Schellens IM, de Graaff PM, Kimpen JL, Koenderman L . (2006). Respiratory syncytial virus inhibits granulocyte apoptosis through a phosphatidylinositol 3-kinase and NF-kappaB-dependent mechanism. J Immunol 176: 5529–5537.

    CAS  PubMed  Google Scholar 

  • Luscher B, Larsson LG . (2007). The world according to Myc. EMBO reports 8: 1110–1114.

    PubMed  PubMed Central  Google Scholar 

  • Luscher B . (2001). Function and regulation of the transcription factors of the Myc/Max/Mad network. Gene 277: 1014.

    Google Scholar 

  • Maclean KH, Keller UB, Rodriguez-Galindo C, Nilsson JA, Cleveland JL . (2003). c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL. Mol Cell Biol 23: 7256–7270.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng F, Liu L, Chin PC, D'Mello SR . (2002). Akt is a downstream target of NF-kappa B. J Biol Chem 277: 29674–29680.

    CAS  PubMed  Google Scholar 

  • Meyer N, Kim SS, Penn LZ . (2006). The Oscar-worth role of Myc in apoptosis. Semin Cancer Biol 16: 275–287.

    CAS  PubMed  Google Scholar 

  • Meylan E, Tschopp J . (2005). The RIP kinases: crucial integrators of cellular stress. Trends Biochem Sci 30: 151–159.

    CAS  PubMed  Google Scholar 

  • Mitchell KO, Ricci MS, Miyashita T, Dicker DT, Jin Z, Reed JC et al. (2000). Bax is a transcriptional target and mediator of c-Myc-induced apoptosis. Cancer Res 60: 6318–6325.

    CAS  PubMed  Google Scholar 

  • Nieminen AI, Partanen JI, Jau A, Klefstrom J . (2007b). c-Myc primed mitochondria determine cellular sensitivity to TRAIL-induced apoptosis. EMBO J 26: 1055–1067.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nieminen AI, Partanen JI, Klefstrom J . (2007a). C-Myc blazing a trail of death. Cell Cycle 6: 2464–2472.

    CAS  PubMed  Google Scholar 

  • Nikiforov MA, Riblett M, Tang WH, Gratchouck V, Zhuang D, Fernandez Y et al. (2007). Tumor cell-selective regulation of NOXA by c-Myc in response to proteasome inhibition. Proc Natl Acad Sci USA 104: 19488–19493.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson JA, Cleveland JL . (2003). Myc pathways provoking cell suicide and cancer. Oncogene 22: 9007–9021.

    CAS  PubMed  Google Scholar 

  • Oster SK, Ho CS, Soucie EL, Penn LZ . (2002). The Myc oncogene: marvelously complex. Adv Cancer Res 84: 81–154.

    CAS  PubMed  Google Scholar 

  • Oster SK, Mao DY, Kennedy J, Penn LZ . (2003). Functional analysis of the N-terminal domain of the Myc oncoprotein. Oncogene 22: 1998–2010.

    CAS  PubMed  Google Scholar 

  • Patel JH, McMahon SB . (2006). Targeting of Miz-1 is essential for Myc-mediated apoptosis. J Biol Chem 281: 3283–3289.

    CAS  PubMed  Google Scholar 

  • Patel JH, McMahon SB . (2007). BCL2 is a downstream effector of MIZ-1 essential for blocking c-Myc-induced apoptosis. J Biol Chem 282: 5–13.

    CAS  PubMed  Google Scholar 

  • Pauklin S, Kristjuhan A, maimets T, Jaks V . (2005). ART and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress. Biochem Biophys Res Commun 334: 386–394.

    CAS  PubMed  Google Scholar 

  • Pusapati RV, Rounbehler RJ, Hong S, Powers JT, Yan M, Kiguchi K et al. (2006). ATM promotes apoptosis and suppresses tumorigenesis in response to Myc. Proc Natl Acad Sci USA 103: 1446–1451.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci MS, Jin Z, Dews M, Yu D, Thomas-Tikhonenko A, Dicker DT et al. (2004). Direct repression of FLIP expression by c-Myc is a major determinant of TRAIL sensitivity. Mol Cell Biol 24: 8541–8555.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci MS, Kim SH, Ogi K, Plastaras JP, Ling J, Wang W et al. (2007). Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell 12: 66–80.

    CAS  PubMed  Google Scholar 

  • Rottman S, Luscher B . (2006). The mad side of the max network: antagonizing the function of myc and more. Curr Top Microbiol Immunol 302: 63–122.

    Google Scholar 

  • Sakamuro D, Eviner V, Elliott KJ, Showe L, White E, Prendergast GC . (1995). c-Myc induces apoptosis in epithelial cells by both p53-dependent and p53-independent mechanisms. Oncogene 11: 2411–2418.

    CAS  PubMed  Google Scholar 

  • Sargent LM, Sanderson ND, Thorgeirsson SS . (1996). Ploidy and karyotypic alterations associated with early events in the development of hepatocarcinogenesis in transgenic mice harboring c-Myc and transforming growth factor alpha transgenes. Cancer Res 56: 2137–2142.

    CAS  PubMed  Google Scholar 

  • Sarker D, Fisher PB . (2006). Regulation of Myc function by ARF: checkpoint for Myc-induced oncogenesis. Cancer Biol Ther 5: 693–695.

    Google Scholar 

  • Schmitt CA, McCurrach ME, De Stanchina E, Wallace-Brodeur RR, Lowe SW . (1999). INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 13: 2670–2677.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze-Bergkamen H, Brenner D, Krueger A, Suess D, Fas SC, Frey CR et al. (2004). Hepatocyte growth factor induces Mcl-1 in primary human hepatocytes and inhibits CD95-mediated apoptosis via Akt. Hepatology 39: 645–654.

    CAS  PubMed  Google Scholar 

  • Seoane J, Le HV, Massague J . (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419: 729–734.

    CAS  PubMed  Google Scholar 

  • Shi Y, Glynn JM, Guilbert WJ, Cotter TG, Bissonnette RP, Green DR . (1992). Role for c-Myc in activation-induced apoptotic cell death in T cell hybridomas. Science 257: 212–214.

    CAS  PubMed  Google Scholar 

  • Spencer CA, Groudine M . (1991). Control of c-Myc regulation in normal and neoplastic cells. Adv Cancer Res 56: 1–48.

    CAS  PubMed  Google Scholar 

  • Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM et al. (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9: 1031–1044.

    CAS  PubMed  Google Scholar 

  • Vairapandi M, Balliet AG, Fornace A, Hoffman B, Liebermann DA . (1996). The differentiation primary response gene MyD118, related to Gadd45, encodes for a nuclear protein which interacts with PCNA and p21. Oncogene 12: 2579–2594.

    CAS  PubMed  Google Scholar 

  • Vesely DL, Hoffman B, Liebermann DA . (2007). Phosphatidylinositol 3-kinase/Akt signaling mediates interleukin-6 protection against p53-induced apoptosis in M1 myeloid leukemic cells. Oncogene 26: 3041–3050.

    CAS  PubMed  Google Scholar 

  • Vousden KH . (2002). Switching from life to death: the Miz-ing link between Myc and p53. Cancer Cell 2: 351–352.

    CAS  PubMed  Google Scholar 

  • Wagner AJ, Kokontis JM, Hay N . (1994). Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev 8: 2817–2830.

    CAS  PubMed  Google Scholar 

  • Wang Y, Engels IH, Knee DA, Nasoff M, Deveraux QL, Quon KC . (2004). Synthetic lethal targeting of Myc by activation of the DR5 death receptor pathway. Cancer Cell 5: 501–512.

    CAS  PubMed  Google Scholar 

  • Wu S, Cetinkaya C, Munoz-Alonso MJ, von der Lehr N, Bahram F, Beuger V et al. (2003). Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22: 351–360.

    CAS  PubMed  Google Scholar 

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ et al. (1998). Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12: 2424–2433.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Hoffman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, B., Liebermann, D. Apoptotic signaling by c-MYC. Oncogene 27, 6462–6472 (2008). https://doi.org/10.1038/onc.2008.312

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.312

Keywords

This article is cited by

Search

Quick links