Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PRIMA-1MET/APR-246 targets mutant forms of p53 family members p63 and p73

Abstract

The low molecular weight compound PRIMA-1 and the structural analog PRIMA-1MET, also named APR-246, reactivate mutant p53 through covalent binding to the core domain and induce apoptosis in tumor cells. Here, we asked whether PRIMA-1MET/APR-246 can rescue mutant forms of the p53 family members p63 and p73 that share high sequence homology with p53. We found that PRIMA-1MET/APR-246 can restore the pro-apoptotic function to mutant TAp63γ and TAp73β in tumor cells but has less effect on TAp73α. Moreover, PRIMA-1MET/APR-246-stimulated DNA binding of mutant TAp63γ and induced expression of the p53/p63/p73 downstream targets p21 and Noxa. The reactivation of mutant p53, p63 and p73 by PRIMA-1MET/APR-246 indicates a common mechanism, presumably involving homologous structural elements in the p53 family proteins. Our findings may open avenues for therapeutic intervention in human developmental disorders with mutations in p63.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bernassola F, Oberst A, Melino G, Pandolfi PP . (2005). The promyelocytic leukaemia protein tumour suppressor functions as a transcriptional regulator of p63. Oncogene 24: 6982–6986.

    Article  CAS  PubMed  Google Scholar 

  • Buhlmann S, Putzer BM . (2008). DNp73 a matter of cancer: mechanisms and clinical implications. Biochim Biophys Acta 1785: 207–216.

    CAS  PubMed  Google Scholar 

  • Bykov VJ, Issaeva N, Selivanova G, Wiman KG . (2002a). Mutant p53-dependent growth suppression distinguishes PRIMA-1 from known anticancer drugs: a statistical analysis of information in the National Cancer Institute database. Carcinogenesis 23: 2011–2018.

    Article  CAS  PubMed  Google Scholar 

  • Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P et al. (2002b). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8: 282–288.

    Article  CAS  PubMed  Google Scholar 

  • Bykov VJ, Issaeva N, Zache N, Shilov A, Hultcrantz M, Bergman J et al. (2005a). Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J Biol Chem 280: 30384–30391.

    Article  CAS  PubMed  Google Scholar 

  • Bykov VJ, Zache N, Stridh H, Westman J, Bergman J, Selivanova G et al. (2005b). PRIMA-1(MET) synergizes with cisplatin to induce tumor cell apoptosis. Oncogene 24: 3484–3491.

    Article  CAS  PubMed  Google Scholar 

  • Cam H, Griesmann H, Beitzinger M, Hofmann L, Beinoraviciute-Kellner R, Sauer M et al. (2006). p53 family members in myogenic differentiation and rhabdomyosarcoma development. Cancer Cell 10: 281–293.

    Article  CAS  PubMed  Google Scholar 

  • Celli J, Duijf P, Hamel BC, Bamshad M, Kramer B, Smits AP et al. (1999). Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome. Cell 99: 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Chan WM, Siu WY, Lau A, Poon RY . (2004). How many mutant p53 molecules are needed to inactivate a tetramer? Mol Cell Biol 24: 3536–3551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chipuk JE, Maurer U, Green DR, Schuler M . (2003). Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4: 371–381.

    Article  CAS  PubMed  Google Scholar 

  • Corn PG, Kuerbitz SJ, van Noesel MM, Esteller M, Compitello N, Baylin SB et al. (1999). Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5' CpG island methylation. Cancer Res 59: 3352–3356.

    CAS  PubMed  Google Scholar 

  • de Stanchina E, Querido E, Narita M, Davuluri RV, Pandolfi PP, Ferbeyre G et al. (2004). PML is a direct p53 target that modulates p53 effector functions. Mol Cell 13: 523–535.

    Article  CAS  PubMed  Google Scholar 

  • Demma MJ, Wong S, Maxwell E, Dasmahapatra B . (2004). CP-31398 restores DNA-binding activity to mutant p53 in vitro but does not affect p53 homologs p63 and p73. J Biol Chem 279: 45887–45896.

    Article  CAS  PubMed  Google Scholar 

  • Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D et al. (2005). Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7: 363–373.

    Article  CAS  PubMed  Google Scholar 

  • Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K et al. (2000). Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 19: 6185–6195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghioni P, Bolognese F, Duijf PH, Van Bokhoven H, Mantovani R, Guerrini L . (2002). Complex transcriptional effects of p63 isoforms: identification of novel activation and repression domains. Mol Cell Biol 22: 8659–8668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez S, Perez-Perez MM, Hernando E, Serrano M, Cordon-Cardo C . (2005). p73beta-Mediated apoptosis requires p57kip2 induction and IEX-1 inhibition. Cancer Res 65: 2186–2192.

    Article  CAS  PubMed  Google Scholar 

  • Grob TJ, Novak U, Maisse C, Barcaroli D, Luthi AU, Pirnia F et al. (2001). Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Diff 8: 1213–1223.

    Article  CAS  Google Scholar 

  • Guo X, Keyes WM, Papazoglu C, Zuber J, Li W, Lowe SW et al. (2009). TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat Cell Biol 11: 1451–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helton ES, Zhu J, Chen X . (2006). The unique NH2-terminally deleted (DeltaN) residues, the PXXP motif, and the PPXY motif are required for the transcriptional activity of the DeltaN variant of p63. J Biol Chem 281: 2533–2542.

    Article  CAS  PubMed  Google Scholar 

  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A et al. (1997). Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90: 809–819.

    Article  CAS  PubMed  Google Scholar 

  • Kawano S, Miller CW, Gombart AF, Bartram CR, Matsuo Y, Asou H et al. (1999). Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 94: 1113–1120.

    CAS  PubMed  Google Scholar 

  • Lambert JM, Gorzov P, Veprintsev DB, Soderqvist M, Segerback D, Bergman J et al. (2009). PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15: 376–388.

    Article  CAS  PubMed  Google Scholar 

  • Lambert JM, Moshfegh A, Hainaut P, Wiman KG, Bykov VJ . (2010). Mutant p53 reactivation by PRIMA-1(MET) induces multiple signaling pathways converging on apoptosis. Oncogene 29: 1329–1338.

    Article  CAS  PubMed  Google Scholar 

  • Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A . (1999). p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398: 708–713.

    Article  CAS  PubMed  Google Scholar 

  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19: 607–614.

    Article  CAS  PubMed  Google Scholar 

  • Osada M, Ohba M, Kawahara C, Ishioka C, Kanamaru R, Katoh I et al. (1998). Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med 4: 839–843.

    Article  CAS  PubMed  Google Scholar 

  • Ozaki T, Naka M, Takada N, Tada M, Sakiyama S, Nakagawara A . (1999). Deletion of the COOH-terminal region of p73alpha enhances both its transactivation function and DNA-binding activity but inhibits induction of apoptosis in mammalian cells. Cancer Res 59: 5902–5907.

    CAS  PubMed  Google Scholar 

  • Pochampally R, Li C, Lu W, Chen L, Luftig R, Lin J et al. (2000). Temperature-sensitive mutants of p53 homologs. Biochem Biophys Res Commun 279: 1001–1010.

    Article  CAS  PubMed  Google Scholar 

  • Rökaeus N, Klein G, Wiman KG, Szekely L, Mattsson K . (2007). PRIMA-1(MET) induces nucleolar accumulation of mutant p53 and PML nuclear body-associated proteins. Oncogene 26: 982–992.

    Article  PubMed  Google Scholar 

  • Rinne T, Brunner HG, van Bokhoven H . (2007). p63-associated disorders. Cell Cycle 6: 262–268.

    Article  CAS  PubMed  Google Scholar 

  • Schmale H, Bamberger C . (1997). A novel protein with strong homology to the tumor suppressor p53. Oncogene 15: 1363–1367.

    Article  CAS  PubMed  Google Scholar 

  • Scoumanne A, Harms KL, Chen X . (2005). Structural basis for gene activation by p53 family members. Cancer Biol Ther 4: 1178–1185.

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Vakifahmetoglu H, Stridh H, Zhivotovsky B, Wiman KG . (2008). PRIMA-1MET induces mitochondrial apoptosis through activation of caspase-2. Oncogene 27: 6571–6580.

    Article  CAS  PubMed  Google Scholar 

  • Stiewe T, Theseling CC, Putzer BM . (2002). Transactivation-deficient Delta TA-p73 inhibits p53 by direct competition for DNA binding: implications for tumorigenesis. J Biol Chem 277: 14177–14185.

    Article  CAS  PubMed  Google Scholar 

  • Strano S, Rossi M, Fontemaggi G, Munarriz E, Soddu S, Sacchi A et al. (2001). From p63 to p53 across p73. FEBS Lett 490: 163–170.

    Article  CAS  PubMed  Google Scholar 

  • Su X, Paris M, Gi YJ, Tsai KY, Cho MS, Lin YL et al. (2009). TAp63 prevents premature aging by promoting adult stem cell maintenance. Cell Stem Cell 5: 64–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh EK, Yang A, Kettenbach A, Bamberger C, Michaelis AH, Zhu Z et al. (2006). p63 protects the female germ line during meiotic arrest. Nature 444: 624–628.

    Article  CAS  PubMed  Google Scholar 

  • Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC et al. (2008). TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev 22: 2677–2691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trink B, Okami K, Wu L, Sriuranpong V, Jen J, Sidransky D . (1998). A new human p53 homologue. Nat Med 4: 747–748.

    Article  PubMed  Google Scholar 

  • Ueda Y, Hijikata M, Takagi S, Chiba T, Shimotohno K . (1999). New p73 variants with altered C-terminal structures have varied transcriptional activities. Oncogene 18: 4993–4998.

    Article  CAS  PubMed  Google Scholar 

  • van Bokhoven H, Hamel BC, Bamshad M, Sangiorgi E, Gurrieri F, Duijf PH et al. (2001). p63 Gene mutations in EEC syndrome, limb-mammary syndrome, and isolated split hand-split foot malformation suggest a genotype-phenotype correlation. Am J Hum Genet 69: 481–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V et al. (1998). p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2: 305–316.

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT et al. (1999). p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398: 714–718.

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J et al. (2000). p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404: 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Zache N, Lambert JM, Wiman KG, Bykov VJ . (2008). PRIMA-1MET inhibits growth of mouse tumors carrying mutant p53. Cell Oncol 30: 411–418.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng X, Zhu Y, Lu H . (2001). NBP is the p53 homolog p63. Carcinogenesis 22: 215–219.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Jiandong Chen, H Lee Moffitt Cancer Center, for the ts mutant p63/p73-expressing cells, and Dr Bert Vogelstein, Johns Hopkins Oncology Center, for the HCT116 cells. This work was supported by EU 6th Framework Program within the EPISTEM Integrated Project (LSHB-CT-2005-019067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K G Wiman.

Ethics declarations

Competing interests

KGW and VJNB are cofounders and shareholders of Aprea AB, a company that develops p53-based cancer therapy, and KGW is a member of its board.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rökaeus, N., Shen, J., Eckhardt, I. et al. PRIMA-1MET/APR-246 targets mutant forms of p53 family members p63 and p73. Oncogene 29, 6442–6451 (2010). https://doi.org/10.1038/onc.2010.382

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.382

Keywords

This article is cited by

Search

Quick links