Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

BAG-1 suppresses expression of the key regulatory cytokine transforming growth factor β (TGF-β1) in colorectal tumour cells

Abstract

As colorectal cancer remains the second highest cause of cancer-related deaths in much of the industrialised world, identifying novel strategies to prevent colorectal tumour development remains an important challenge. BAG-1 is a multi-functional protein, the expression of which is up-regulated at relatively early stages in colorectal tumorigenesis. Importantly, BAG-1 is thought to enhance colorectal tumour progression through promoting tumour cell survival. Here, we report for the first time a novel role for BAG-1, establishing it as a suppressor of transforming growth factor β (TGF-β1) expression in colorectal tumour cells. Microarray analysis first highlighted the possibility that BAG-1 may regulate TGF-β1 expression, a key cytokine in normal colonic tissue homoeostasis. Q-RT–PCR and ELISA demonstrated TGFB1 mRNA and protein expression to be significantly increased when BAG1 levels were reduced by small interfering RNA; additionally, induction of BAG-1L caused suppression of TGFB1 mRNA in colorectal tumour cells. Using reporter and chromatin immunoprecipitation assays, a direct association of BAG-1 with the TGFB1 gene regulatory region was identified. Immunohistochemistry and Weiser fraction data indicated that the levels of BAG-1 and TGF-β1 are inversely correlated in the normal colonic epithelium in vivo, consistent with a role for BAG-1-mediated repression of TGF-β1 production. In vitro studies showed that the change in TGF-β1 production following manipulation of BAG-1 is functionally relevant; through induction of anchorage-independent growth in TGF-β1-dependent normal rat kidney fibroblasts and regulation of SMAD2 phosphorylation in TGF-β1-sensitive adenoma cells. Taken together, this study identifies the anti-apoptotic protein BAG-1 as a suppressor of the inhibitory growth factor TGF-β1, suggesting that high expression of BAG-1 can impact on a number of the hallmarks of cancer, of potential importance in promoting the early stages of colorectal tumorigenesis. Establishing BAG-1 as a repressor of TGF-β1 has important biological implications, and highlights a new role for BAG-1 in colorectal tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Massagué J . TGFbeta in cancer. Cell 2008; 134: 215–230.

    Article  Google Scholar 

  2. Ikushima H, Miyazono K . TGF-beta signalling: a complex web in cancer progression. Nat Rev Cancer 2010; 10: 415–424.

    Article  CAS  Google Scholar 

  3. Moustakas A, Heldin CH . The regulation of TGFbeta signal transduction. Development 2009; 136: 3699–3714.

    Article  CAS  Google Scholar 

  4. Avery A, Paraskeva C, Hall P, Flanders KC, Sport M, Moorghen M . TGF-beta expression in the human colon: differential immunostaining along the crypt epithelium. Br J Cancer 1993; 68: 137–139.

    Article  CAS  Google Scholar 

  5. Barnard JA, Warwick GJ, Gold LI . Localization of transforming growth factor beta isoforms in the normal murine small intestine and colon. Gastroenterology 1993; 105: 67–73.

    Article  CAS  Google Scholar 

  6. Heldin CH, Landström M, Moustakas A . Mechanism of TGF-beta signalling to growth arrest, apoptosis and epithelial-mesenchymal transition. Curr Opin Cell Biol 2009; 21: 166–176.

    Article  CAS  Google Scholar 

  7. Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, Kostakis A, Nikiteas N, Papavassiliou AG . TGF-beta signalling in colon carcinogenesis. Cancer Lett 2012; 314: 1–7.

    Article  CAS  Google Scholar 

  8. Babyatsky MW, Rossiter G, Podolsky DK . Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology 1996; 110: 798–802.

    Google Scholar 

  9. Townsend PA, Stephanou A, Packham G, Latchman DS . BAG-1: a multi-functional pro-survival protein. Int J Biochem Cell Biol 2005; 37: 251–259.

    Article  CAS  Google Scholar 

  10. Packham G, Brimmell M, Cleveland JL . Mammalian cells express two differently localized Bag-1 isoforms generated by alternative translation initiation. Biochem J 1997; 328: 807–813.

    Article  CAS  Google Scholar 

  11. Sharp A, Crabb SJ, Townsend PA, Cutress RI, Brimmell M, Wang XH et al. BAG-1 in carcinogenesis. Exp Rev Mol Med 2004; 6: 1–15.

    Article  Google Scholar 

  12. Clemo NK, Collard TJ, Southern SL, Edwards KD, Moorghen M, Packham G et al. BAG-1 is up-regulated in colorectal tumour progression and promotes colorectal tumour cell survival through increased NF-kappaB activity. Carcinogenesis 2008; 29: 849–857.

    Article  CAS  Google Scholar 

  13. Arhel NJ, Packham G, Townsend PA, Collard TF, H-Zadeh AM, Sharp A et al. The retinoblastoma protein interacts with Bag-1 in human colonic adenoma and carcinoma derived cell lines. Int J Cancer 2003; 106: 364–371.

    Article  CAS  Google Scholar 

  14. Barnes JD, Arhel NJ, Lee SS, Sharp A, Al-Okail M, Packham G et al. Nuclear BAG-1 expression inhibits apoptosis in colorectal adenoma-derived epithelial cells. Apoptosis 2005; 10: 301–311.

    Article  CAS  Google Scholar 

  15. Kikuchi R, Noguchi T, Takeno S, Funada Y, Moriyama H, Uchida Y . Nuclear BAG-1 expression reflects malignant potential in colorectal carcinomas. Br J Cancer 2002; 87: 1136–1139.

    Article  CAS  Google Scholar 

  16. Gehring U . Multiple, but concerted cellular activities of the human protein Hap46/BAG-1M and isoforms. Int J Mol Sci 2009; 10: 906–928.

    Article  CAS  Google Scholar 

  17. Niyaz Y, Zeiner M, Gehring U . Transcriptional activation by human Hsp70-associating protein Hap50. J Cell Sci 2001; 114: 1839–1845.

    CAS  Google Scholar 

  18. Zeiner M, Niyaz Y, Gehring U . The hsp70-associating protein Hap46 binds to DNA and stimulates transcription. Proc Natl Acad Sci USA 1999; 96: 10194–10199.

    Article  CAS  Google Scholar 

  19. Cutress RI, Townsend PA, Sharp A, Maison A, Wood L, Lee R et al. The nuclear BAG-1 isoform, BAG-1L, enhances oestrogen-dependent transcription. Oncogene 2003; 22: 4973–4982.

    Article  CAS  Google Scholar 

  20. Shatkina L, Mink S, Rogatsch H, Klocker H, Langer G, Nestl A et al. The cochaperone Bag-1L enhances androgen receptor action via interaction with the NH2-terminal region of the receptor. Mol Cell Biol 2003; 23: 7189–7197.

    Article  CAS  Google Scholar 

  21. Wang XH, O’Connor D, Brimmell M, Packham G . The BAG-1 co-chaperone is a negative regulator of p73-dependent transcription. Br J Cancer 2009; 100: 1347–1357.

    Article  CAS  Google Scholar 

  22. Southern SL, Collard TJ, Urban BC, Skeen VR, Smartt HJ, Hague A et al. BAG-1 interacts with the p50-p50 homodimeric NF-kappaB complex: implications for colorectal carcinogenesis. Oncogene 2012; 31: 2761–2772.

    Article  CAS  Google Scholar 

  23. Takayama S, Krajewski S, Krajewska M, Kitada S, Zapata JM, Kochel K et al. Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumour cell lines. Cancer Res 1998; 58: 3116–3131.

    CAS  Google Scholar 

  24. Kim SJ, Glick A, Sporn MB, Roberts AB . Characterization of the promoter region of the human transforming growth factor-beta 1 gene. J Biol Chem 1989; 264: 402–408.

    CAS  PubMed  Google Scholar 

  25. Barnard JA, Warwick GJ . Butyrate rapidly induces growth inhibition and differentiation in HT-29 cells. Cell Growth Diff 1993; 4: 495–501.

    CAS  PubMed  Google Scholar 

  26. Wang G, Higgins PJ, Gannon M, Staiano-Coico L . Transforming growth factor-beta 1 acts cooperatively with sodium n-butyrate to induce differentiation of normal human keratinocytes. Exp Cell Res 1992; 198: 27–30.

    Article  CAS  Google Scholar 

  27. Hague A, Singh B, Paraskeva C . Butyrate acts as a survival factor for colonic epithelial cells: further fuel for the in vivo versus in vitro debate. Gastroenterology 1997; 112: 1036–1040.

    Article  CAS  Google Scholar 

  28. Mariadason JM, Nicholas C, L’Italien KE, Zhuang M, Smartt HJ, Heerdt BG et al. Gene expression profiling of intestinal epithelial cell maturation along the crypt-villus axis. Gastroenterology 2005; 128: 1081–1088.

    Article  CAS  Google Scholar 

  29. Smartt HJ, Greenhough A, Ordóñez-Morán P, Talero E, Cherry CA, Wallam CA et al. Beta-catenin represses expression of the tumour suppressor 15-prostaglandin dehydrogenase in the normal intestinal epithelium and colorectal tumour cells. Gut 2012; 61: 1306–1314.

    Article  CAS  Google Scholar 

  30. Manning AM, Williams AC, Game SM, Paraskeva C . Differential sensitivity of human colonic adenoma and carcinoma cells to transforming growth factor beta (TGF-beta): conversion of an adenoma cell line to a tumorigenic phenotype is accompanied by a reduced response to the inhibitory effects of TGF-beta. Oncogene 1991; 6: 1471–1476.

    CAS  PubMed  Google Scholar 

  31. Skeen VR, Paterson I, Paraskeva C, Williams AC . TGF-β1 signalling, connecting aberrant inflammation and colorectal tumori-genesis. Curr Pharm Des 2012; 18: 3874–3888.

    Article  CAS  Google Scholar 

  32. Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF . Transforming growth factor-beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 1995; 92: 5545–5549.

    Article  CAS  Google Scholar 

  33. Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massagué J, Roberts JM et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 1994; 8: 9–22.

    Article  CAS  Google Scholar 

  34. Pardali K, Kurisaki A, Morén A, ten Dijke P, Kardassis D, Moustakas A . Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor-beta. J Biol Chem 2000; 275: 29244–29256.

    Article  CAS  Google Scholar 

  35. Mulder KM, Levine AE, Hernandez X, McKnight MK, Brattain DE, Brattain MG . Modulation of c-myc by transforming growth factor-beta in human colon carcinoma cells. Biochem Biophys Res Commun 1988; 150: 711–716.

    Article  CAS  Google Scholar 

  36. Zhang XY, Pfeiffer HK, Mellert HS, Stanek TJ, Sussman RT, Kumari A et al2011. Inhibition of the single downstream target BAG1 activates the latent apoptotic potential of MYC. Mol Cell Biol 2011; 31: 5037–5045.

    Article  CAS  Google Scholar 

  37. Myant K, Sansom OJ . Wnt/Myc interactions in intestinal cancer: partners in crime. Exp Cell Res 2011; 317: 2725–2731.

    Article  CAS  Google Scholar 

  38. Siegel PM, Massagué J . Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003; 3: 807–821.

    Article  CAS  Google Scholar 

  39. Friedman E, Gold LI, Klimstra D, Zeng ZS, Winawer S, Cohen A . High levels of transforming growth factor beta-1 correlate with disease progression in human colon cancer. Cancer Epidemiol Biomarkers Prev 1995; 4: 549–554.

    CAS  PubMed  Google Scholar 

  40. Tsushima H, Kawata S, Tamura S, Ito N, Shirai Y, Kiso S et al. High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology 1996; 110: 375–382.

    Article  CAS  Google Scholar 

  41. Picon A, Gold LI, Wang J, Cohen A, Friedman E . A subset of metastatic human colon cancers expresses elevated levels of transforming growth factor beta1. Cancer. Epidemiol Biomarkers Prev 1998; 7: 497–504.

    CAS  Google Scholar 

  42. Xu WQ, Jiang XC, Zheng L, Yu YY, Tang JM . Expression of TGF-beta1, TbetaRII and Smad4 in colorectal carcinoma. Exp Mol Pathol 2007; 82: 284–291.

    Article  CAS  Google Scholar 

  43. Zhang YE . Non-Smad pathways in TGF-beta signalling. Cell Res 2009; 19: 128–139.

    Article  CAS  Google Scholar 

  44. Hong W, Baniahmad A, Liu Y, Li H . Bag-1M is a component of the in vivo DNA-glucocorticoid receptor complex at hormone-regulated promoter. J Mol Biol 2008; 384: 22–30.

    Article  CAS  Google Scholar 

  45. Hong W, Baniahmad A, Li J, Chang C, Gao W, Liu Y . Bag-1M inhibits the transactivation of the glucocorticoid receptor via recruitment of corepressors. FEBS Lett 2009; 583: 2451–2456.

    Article  CAS  Google Scholar 

  46. Lee KY, Ito K, Hayashi R, Jazrawi EP, Barnes PJ, Adcock IM . NF-kappaB and activator protein 1 response elements and the role of histone modifications in IL-1beta-induced TGF-beta1 gene transcription. J Immunol 2006; 176: 603–615.

    Article  CAS  Google Scholar 

  47. Sharp A, Cutress RI, Johnson PW, Packham G, Townsend PA . Short peptides derived from the BAG-1 C-terminus inhibit the interaction between BAG-1 and HSC70 and decrease breast cancer cell growth. FEBS Lett 2009; 583: 3405–3411.

    Article  CAS  Google Scholar 

  48. Sharp A, Crabb SJ, Johnson PW, Hague A, Cutress R, Townsend PA et al. Thioflavin S (NSC71948) interferes with Bcl-2-associated athanogene (BAG-1)-mediated protein-protein interactions. J Pharmacol Exp Ther 2009; 331: 680–689.

    Article  CAS  Google Scholar 

  49. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  50. Paraskeva C, Finerty S, Mountford RA, Powell SC . Specific cytogenetic abnormalities in two new human colorectal adenomaderived epithelial cell lines. Cancer Res 1989; 49: 1282–1286.

    CAS  Google Scholar 

  51. Williams AC, Browne SJ, Yeudal WA, Paterson IC, Marshall CJ, Lane DP et al. Molecular events including p53 and k-ras alterations in the in vitro progression of a human colorectal adenoma cell line to an adenocarcinoma. Oncogene 1993; 8: 3063–3072.

    CAS  Google Scholar 

  52. Strathdee CA, McLeod MR, Hall JR . Efficient control of tetracycline-responsive gene expression from an autoregulated bi-directional expression vector. Gene 1999; 229: 21–29.

    Article  CAS  Google Scholar 

  53. Brimmell M, Burns JS, Munson P, McDonald L, O’Hare MJ, Lakhani SR et al. High level expression of differentially localized BAG-1 isoforms in some oestrogen receptor-positive human breast cancers. Br J Cancer 1999; 81: 1042–1051.

    Article  CAS  Google Scholar 

  54. Kaidi A, Williams AC, Paraskeva C . Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol 2007; 9: 210–217.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a Cancer Research UK programme grant, the Citrina Foundation, CORE and by the John James Bristol Foundation. We thank members of the CP group for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P A Townsend or A C Williams.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skeen, V., Collard, T., Southern, S. et al. BAG-1 suppresses expression of the key regulatory cytokine transforming growth factor β (TGF-β1) in colorectal tumour cells. Oncogene 32, 4490–4499 (2013). https://doi.org/10.1038/onc.2012.480

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.480

Keywords

This article is cited by

Search

Quick links