Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenic KRAS and BRAF activation of the MEK/ERK signaling pathway promotes expression of dual-specificity phosphatase 4 (DUSP4/MKP2) resulting in nuclear ERK1/2 inhibition

Abstract

Gain-of-function mutations in KRAS and BRAF genes are found in up to 50% of colorectal cancers. These mutations result in the activation of the BRAF/MEK signaling pathway culminating in the stimulation of ERK1/2 mitogen-activated protein kinases. Upon activation, ERK1/2 translocate from the cytoplasm to the nucleus. This process has been shown to be required for the induction of many cellular responses, although the molecular mechanisms regulating ERK nuclear function, especially under oncogenic stimulation, remain to be explored. Herein, we examined the spatiotemporal regulation of ERK1/2 activity upon oncogenic activation of KRASG12V and BRAFV600E in normal intestinal epithelial crypt cells (IECs). Results demonstrate that expression of these oncogenes markedly stimulated ERK1/2 activities and morphologically transformed IECs. Importantly however, ERK phosphorylation was not observed in the nucleus, but restricted to the cytoplasm of KRASG12V- and BRAFV600E-transformed IECs. The absence of nuclear ERK phosphorylation was due to a vanadate-sensitive phosphatase activity. Nuclear ERK dephosphorylation was found to be tightly correlated with the rapid expression of DUSP4 phosphatase induced in an MEK-dependent manner. In addition, MEK-dependent phosphorylation of T361, T363, S390 and S395 residues highly stabilized DUSP4 protein. Finally, in human colorectal cancer cells, ERK1/2 activities were also confined to the cytoplasm and treatment with pervanadate reactivated ERK1/2 in the nucleus. Accordingly, DUSP4 mRNAs were found to be highly expressed, in an MEK-dependent manner, in all colorectal cancer cells analyzed. These findings indicate that DUSP4 functions as part of a negative feedback mechanism in the control of the duration and magnitude of nuclear ERK activation during intestinal tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adachi M, Fukuda M, Nishida E . (1999). Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer. EMBO J 18: 5347–5358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliaga JC, Deschenes C, Beaulieu JF, Calvo EL, Rivard N . (1999). Requirement of the MAP kinase cascade for cell cycle progression and differentiation of human intestinal cells. Am J Physiol 277: G631–G641.

    CAS  PubMed  Google Scholar 

  • Andreolas C, Kalogeropoulou M, Voulgari A, Pintzas A . (2008). Fra-1 regulates vimentin during Ha-RAS-induced epithelial mesenchymal transition in human colon carcinoma cells. Int J Cancer 122: 1745–1756.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong SP, Caunt CJ, McArdle CA . (2009). Gonadotropin-releasing hormone and protein kinase C signaling to ERK: spatiotemporal regulation of ERK by docking domains and dual-specificity phosphatases. Mol Endocrinol 23: 510–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avruch J . (2007). MAP kinase pathways: the first twenty years. Biochim Biophys Acta 1773: 1150–1160.

    Article  CAS  PubMed  Google Scholar 

  • Bergeron S, Lemieux E, Durand V, Cagnol S, Carrier JC, Lussier JG et al. (2010). The serine protease inhibitor serpinE2 is a novel target of ERK signaling involved in human colorectal tumorigenesis. Mol Cancer 9: 271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brami-Cherrier K, Valjent E, Herve D, Darragh J, Corvol JC, Pages C et al. (2005). Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J Neurosci 25: 11444–11454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brondello JM, Brunet A, Pouyssegur J, McKenzie FR . (1997). The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44MAPK cascade. J Biol Chem 272: 1368–1376.

    Article  CAS  PubMed  Google Scholar 

  • Brondello JM, Pouyssegur J, McKenzie FR . (1999). Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science 286: 2514–2517.

    Article  CAS  PubMed  Google Scholar 

  • Cagnol S, Van Obberghen-Schilling E, Chambard JC . (2006). Prolonged activation of ERK1, 2 induces FADD-independent caspase 8 activation and cell death. Apoptosis 11: 337–346.

    Article  CAS  PubMed  Google Scholar 

  • Caunt CJ, Armstrong SP, Rivers CA, Norman MR, McArdle CA . (2008a). Spatiotemporal regulation of ERK2 by dual specificity phosphatases. J Biol Chem 283: 26612–26623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caunt CJ, Finch AR, Sedgley KR, McArdle CA . (2006). Seven-transmembrane receptor signalling and ERK compartmentalization. Trends Endocrinol Metab 17: 276–283.

    Article  CAS  PubMed  Google Scholar 

  • Caunt CJ, Rivers CA, Conway-Campbell BL, Norman MR, McArdle CA . (2008b). Epidermal growth factor receptor and protein kinase C signaling to ERK2: spatiotemporal regulation of ERK2 by dual specificity phosphatases. J Biol Chem 283: 6241–6252.

    Article  CAS  PubMed  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    Article  CAS  PubMed  Google Scholar 

  • De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S . (2011). KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol 12: 594–603.

    Article  CAS  PubMed  Google Scholar 

  • Ebisuya M, Kondoh K, Nishida E . (2005). The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J Cell Sci 118: 2997–3002.

    Article  CAS  PubMed  Google Scholar 

  • Fang JY, Richardson BC . (2005). The MAPK signalling pathways and colorectal cancer. Lancet Oncol 6: 322–327.

    Article  CAS  PubMed  Google Scholar 

  • Formstecher E, Ramos JW, Fauquet M, Calderwood DA, Hsieh JC, Canton B et al. (2001). PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev Cell 1: 239–250.

    Article  CAS  PubMed  Google Scholar 

  • Gaedcke J, Grade M, Jung K, Camps J, Jo P, Emons G et al. (2010). Mutated KRAS results in overexpression of DUSP4, a MAP-kinase phosphatase, and SMYD3, a histone methyltransferase, in rectal carcinomas. Genes Chromosomes Cancer 49: 1024–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B et al. (1997). Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272: 843–851.

    Article  CAS  PubMed  Google Scholar 

  • Ikenoue T, Hikiba Y, Kanai F, Aragaki J, Tanaka Y, Imamura J et al. (2004). Different effects of point mutations within the B-Raf glycine-rich loop in colorectal tumors on mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase and nuclear factor kappaB pathway and cellular transformation. Cancer Res 64: 3428–3435.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs D, Glossip D, Xing H, Muslin AJ, Kornfeld K . (1999). Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev 13: 163–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffrey KL, Camps M, Rommel C, Mackay CR . (2007). Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov 6: 391–403.

    Article  CAS  PubMed  Google Scholar 

  • Katagiri C, Masuda K, Urano T, Yamashita K, Araki Y, Kikuchi K et al. (2005). Phosphorylation of Ser-446 determines stability of MKP-7. J Biol Chem 280: 14716–14722.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu K, Buchanan FG, Katkuri S, Morrow JD, Inoue H, Otaka M et al. (2005). Oncogenic potential of MEK1 in rat intestinal epithelial cells is mediated via cyclooxygenase-2. Gastroenterology 129: 577–590.

    Article  CAS  PubMed  Google Scholar 

  • Kondoh K, Nishida E . (2007). Regulation of MAP kinases by MAP kinase phosphatases. Biochim Biophys Acta 1773: 1227–1237.

    Article  CAS  PubMed  Google Scholar 

  • Kucharska A, Rushworth LK, Staples C, Morrice NA, Keyse SM . (2009). Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK. Cell Signal 21: 1794–1805.

    Article  CAS  PubMed  Google Scholar 

  • Lemieux E, Bergeron S, Durand V, Asselin C, Saucier C, Rivard N . (2009). Constitutively active MEK1 is sufficient to induce epithelial-to-mesenchymal transition in intestinal epithelial cells and to promote tumor invasion and metastasis. Int J Cancer 125: 1575–1586.

    Article  CAS  PubMed  Google Scholar 

  • Lenormand P, Brondello JM, Brunet A, Pouyssegur J . (1998). Growth factor-induced p42/p44 MAPK nuclear translocation and retention requires both MAPK activation and neosynthesis of nuclear anchoring proteins. J Cell Biol 142: 625–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YW, Yang JL . (2006). Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J Biol Chem 281: 915–926.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Suresh Kumar KG, Yu D, Molton SA, McMahon M, Herlyn M et al. (2007). Oncogenic BRAF regulates beta-Trcp expression and NF-kappaB activity in human melanoma cells. Oncogene 26: 1954–1958.

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M . (2003). RAS oncogenes: the first 30 years. Nat Rev Cancer 3: 459–465.

    Article  CAS  PubMed  Google Scholar 

  • Marchetti S, Gimond C, Chambard JC, Touboul T, Roux D, Pouyssegur J et al. (2005). Extracellular signal-regulated kinases phosphorylate mitogen-activated protein kinase phosphatase 3/DUSP6 at serines 159 and 197, two sites critical for its proteasomal degradation. Mol Cell Biol 25: 854–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall CJ . (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Mattison CP, Ota IM . (2000). Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Genes Dev 14: 1229–1235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy LO, Blenis J . (2006). MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31: 268–275.

    Article  CAS  PubMed  Google Scholar 

  • Murphy LO, MacKeigan JP, Blenis J . (2004). A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol Cell Biol 24: 144–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagasaka T, Sasamoto H, Notohara K, Cullings HM, Takeda M, Kimura K et al. (2004). Colorectal cancer with mutation in BRAF, KRAS, and wild-type with respect to both oncogenes showing different patterns of DNA methylation. J Clin Oncol 22: 4584–4594.

    Article  CAS  PubMed  Google Scholar 

  • Nandan MO, McConnell BB, Ghaleb AM, Bialkowska AB, Sheng H, Shao J et al. (2008). Kruppel-like factor 5 mediates cellular transformation during oncogenic KRAS-induced intestinal tumorigenesis. Gastroenterology 134: 120–130.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T . (2008). Total number of genome alterations in sporadic gastrointestinal cancer inferred from pooled analyses in the literature. Tumour Biol 29: 343–350.

    Article  PubMed  Google Scholar 

  • Owens DM, Keyse SM . (2007). Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26: 3203–3213.

    Article  CAS  PubMed  Google Scholar 

  • Peng DJ, Zhou JY, Wu GS . (2010). Post-translational regulation of mitogen-activated protein kinase phosphatase-2 (MKP-2) by ERK. Cell Cycle 9: 4650–4655.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE . (2002). Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418: 934.

    Article  CAS  PubMed  Google Scholar 

  • Ramos JW . (2008). The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol 40: 2707–2719.

    Article  CAS  PubMed  Google Scholar 

  • Simoneau M, Coulombe G, Vandal G, Vezina A, Rivard N . (2011). SHP-1 inhibits beta-catenin function by inducing its degradation and interfering with its association with TATA-binding protein. Cell Signal 23: 269–279.

    Article  CAS  PubMed  Google Scholar 

  • Smakman N, Borel Rinkes IH, Voest EE, Kranenburg O . (2005). Control of colorectal metastasis formation by K-Ras. Biochim Biophys Acta 1756: 103–114.

    CAS  PubMed  Google Scholar 

  • Smith ER, Smedberg JL, Rula ME, Xu XX . (2004). Regulation of Ras-MAPK pathway mitogenic activity by restricting nuclear entry of activated MAPK in endoderm differentiation of embryonic carcinoma and stem cells. J Cell Biol 164: 689–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vakiani E, Solit DB . (2011). KRAS and BRAF: drug targets and predictive biomarkers. J Pathol 223: 219–229.

    Article  CAS  PubMed  Google Scholar 

  • Vial E, Marshall CJ . (2003). Elevated ERK-MAP kinase activity protects the FOS family member FRA-1 against proteasomal degradation in colon carcinoma cells. J Cell Sci 116: 4957–4963.

    Article  CAS  PubMed  Google Scholar 

  • Voisin L, Julien C, Duhamel S, Gopalbhai K, Claveau I, Saba-El-Leil MK et al. (2008). Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors. BMC Cancer 8: 337.

    Article  PubMed  PubMed Central  Google Scholar 

  • Volmat V, Camps M, Arkinstall S, Pouyssegur J, Lenormand P . (2001). The nucleus, a site for signal termination by sequestration and inactivation of p42/p44 MAP kinases. J Cell Sci 114: 3433–3443.

    CAS  PubMed  Google Scholar 

  • Yeh JJ, Routh ED, Rubinas T, Peacock J, Martin TD, Shen XJ et al. (2009). KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Mol Cancer Ther 8: 834–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen ST, Davies H, Chan TL, Ho JW, Bignell GR, Cox C et al. (2002). Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res 62: 6451–6455.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Pierre Pothier for critical reading of the manuscript, and Anne Vézina and Etienne Lemieux for their technical assistance. This research was supported by a grant from the Canadian Institutes of Health and Research to NR (MT-14405). NR is a recipient of a Canadian Research Chair in Colorectal Cancer and Inflammatory Cell Signaling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Rivard.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cagnol, S., Rivard, N. Oncogenic KRAS and BRAF activation of the MEK/ERK signaling pathway promotes expression of dual-specificity phosphatase 4 (DUSP4/MKP2) resulting in nuclear ERK1/2 inhibition. Oncogene 32, 564–576 (2013). https://doi.org/10.1038/onc.2012.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.88

Keywords

This article is cited by

Search

Quick links