Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The immune network in pancreatic cancer development and progression

Abstract

The presence of stromal desmoplasia is a hallmark of spontaneous pancreatic ductal adenocarcinoma, forming a unique microenvironment that comprises many cell types. Only recently, the immune system has entered the pathophysiology of pancreatic ductal adenocarcinoma development. Tumor cells in the pancreas seem to dysbalance the immune system, thus facilitating spontaneous cancer development. This review will try to assemble all relevant data to demonstrate the implications of the immune network on spontaneous cancer development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

BLC:

B lymphocyte chemoattractant

DAMP:

danger-associated molecular pattern

DC:

dendritic cell

IDO:

indoleamine 2,3-dioxygenase

IFN-γ:

interferon-γ

IL-1ra:

IL-1 receptor antagonist

IL-6:

Interleukin 6

INF:

Interferon

MCP1:

monocyte chemoattractant protein 1

M-CSF:

macrophage- colony stimulating factor

MDC:

macrophage-derived chemokine

MDSC:

myeloid-derived suppressor cell

PDA:

pancreatic ductal adenocarcinoma

PDAC:

pancreatic ductal adenocarcinoma

RANTES:

regulated upon activation normal T cell expressed and presumably secreted

SDF-1α:

stromal cell-derived factor 1α

TAM:

tumor-associated macrophage

TAN:

tumor-associated neutrophil

TARC:

thymus and activation-regulated chemokine

Th1:

T helper type 1 cells

Th2:

T helper type 2 cells

TLR:

Toll-like receptor

TRIF:

TIR-domain-containing adapter inducing interferon-β

References

  1. Balkwill F, Mantovani A . Inflammation and cancer: back to Virchow? Lancet 2001; 357: 539–545.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Coussens LM . Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21: 309–322.

    CAS  PubMed  Google Scholar 

  3. Algul H, Treiber M, Lesina M, Schmid RM . Mechanisms of disease: chronic inflammation and cancer in the pancreas–a potential role for pancreatic stellate cells? Nat Clin Pract Gastroenterol Hepatol 2007; 4: 454–462.

    PubMed  Google Scholar 

  4. Hidalgo M . Pancreatic cancer. N Engl J med 2010; 362: 1605–1617.

    CAS  PubMed  Google Scholar 

  5. Borish LC, Steinke JW . 2. Cytokines and chemokines. J Allergy Clin Immunol 2003; 111 (2 Suppl): S460–S475.

    CAS  PubMed  Google Scholar 

  6. Okada S, Okusaka T, Ishii H, Kyogoku A, Yoshimori M, Kajimura N et al Elevated serum interleukin-6 levels in patients with pancreatic cancer Jpn J Clin Oncol 1998; 28: 12–15.

  7. Barber MD, Fearon KC, Ross JA . Relationship of serum levels of interleukin-6, soluble interleukin-6 receptor and tumour necrosis factor receptors to the acute-phase protein response in advanced pancreatic cancer. Clin Sci (Lond) 1999; 96: 83–87.

    CAS  Google Scholar 

  8. Ebrahimi B, Tucker SL, Li D, Abbruzzese JL, Kurzrock R . Cytokines in pancreatic carcinoma: correlation with phenotypic characteristics and prognosis. Cancer 2004; 101: 2727–2736.

    CAS  PubMed  Google Scholar 

  9. Moses AG, Maingay J, Sangster K, Fearon KC, Ross JA . Pro-inflammatory cytokine release by peripheral blood mononuclear cells from patients with advanced pancreatic cancer: relationship to acute phase response and survival. Oncol Rep 2009; 21: 1091–1095.

    CAS  PubMed  Google Scholar 

  10. Mroczko B, Groblewska M, Gryko M, Kedra B, Szmitkowski M . Diagnostic usefulness of serum interleukin 6 (IL-6) and C-reactive protein (CRP) in the differentiation between pancreatic cancer and chronic pancreatitis. J Clin Lab Anal 2010; 24: 256–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wigmore SJ, Fearon KC, Sangster K, Maingay JP, Garden OJ, Ross JA . Cytokine regulation of constitutive production of interleukin-8 and -6 by human pancreatic cancer cell lines and serum cytokine concentrations in patients with pancreatic cancer. Int J Oncol 2002; 21: 881–886.

    CAS  PubMed  Google Scholar 

  12. Zhang D, Zhou Y, Wu L, Wang S, Zheng H, Yu B et al. Association of IL-6 gene polymorphisms with cachexia susceptibility and survival time of patients with pancreatic cancer. Ann Clin Lab Sci 2008; 38: 113–119.

    CAS  PubMed  Google Scholar 

  13. Talar-Wojnarowska R, Gasiorowska A, Smolarz B, Romanowicz-Makowska H, Kulig A, Malecka-Panas E . Clinical significance of interleukin-6 (IL-6) gene polymorphism and IL-6 serum level in pancreatic adenocarcinoma and chronic pancreatitis. Dig Dis Sci 2009; 54: 683–689.

    CAS  PubMed  Google Scholar 

  14. Lesina M, Kurkowski MU, Ludes K, Rose-John S, Treiber M, Kloppel G et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 2011; 19: 456–469.

    CAS  PubMed  Google Scholar 

  15. Fukuda A, Wang SC, JPt Morris, Folias AE, Liou A, Kim GE et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 2011; 19: 441–455.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang R, Loux T, Tang D, Schapiro NE, Vernon P, Livesey KM et al. The expression of the receptor for advanced glycation endproducts (RAGE) is permissive for early pancreatic neoplasia. Proc Natl Acad Sci USA 2012; 109: 7031–7036.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tjomsland V, Spangeus A, Valila J, Sandstrom P, Borch K, Druid H et al. Interleukin 1alpha sustains the expression of inflammatory factors in human pancreatic cancer microenvironment by targeting cancer-associated fibroblasts. Neoplasia 2011; 13: 664–675.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ling J, Kang Y, Zhao R, Xia Q, Lee DF, Chang Z et al. KrasG12D-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer cell 2012; 21: 105–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sawai H, Funahashi H, Yamamoto M, Okada Y, Hayakawa T, Tanaka M et al. Interleukin-1alpha enhances integrin alpha(6)beta(1) expression and metastatic capability of human pancreatic cancer. Oncology 2003; 65: 167–173.

    CAS  PubMed  Google Scholar 

  20. Hamacher R, Diersch S, Scheibel M, Eckel F, Mayr M, Rad R et al. Interleukin 1 beta gene promoter SNPs are associated with risk of pancreatic cancer. Cytokine 2009; 46: 182–186.

    CAS  PubMed  Google Scholar 

  21. Cigrovski Berkovic M, Catela Ivkovic T, Marout J, Zjacic-Rotkvic V, Kapitanovic S . Interleukin 1beta gene single-nucleotide polymorphisms and susceptibility to pancreatic neuroendocrine tumors. DNA Cell Biol 2012; 31: 531–536.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Maker AV, Katabi N, Qin LX, Klimstra DS, Schattner M, Brennan MF et al. Cyst fluid interleukin-1beta (IL1beta) levels predict the risk of carcinoma in intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res 2011; 17: 1502–1508.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Melisi D, Niu J, Chang Z, Xia Q, Peng B, Ishiyama S et al. Secreted interleukin-1alpha induces a metastatic phenotype in pancreatic cancer by sustaining a constitutive activation of nuclear factor-kappaB. Mol Cancer Res 2009; 7: 624–633.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Muerkoster S, Arlt A, Gehrz A, Vorndamm J, Witt M, Grohmann F et al. Autocrine IL-1beta secretion leads to NF-kappabeta-mediated chemoresistance in pancreatic carcinoma cells in vivo. Med Klin (Munich) 2004; 99: 185–190.

    Google Scholar 

  25. Muerkoster S, Wegehenkel K, Arlt A, Witt M, Sipos B, Kruse ML et al. Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta. Cancer Res 2004; 64: 1331–1337.

    PubMed  Google Scholar 

  26. Schmid MC, Avraamides CJ, Foubert P, Shaked Y, Kang SW, Kerbel RS et al. Combined blockade of integrin-alpha4beta1 plus cytokines SDF-1alpha or IL-1beta potently inhibits tumor inflammation and growth. Cancer Res 2011; 71: 6965–6975.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu D, Matsuo Y, Ma J, Koide S, Ochi N, Yasuda A et al. Cancer cell-derived IL-1alpha promotes HGF secretion by stromal cells and enhances metastatic potential in pancreatic cancer cells. J Surg Oncol 2010; 102: 469–477.

    CAS  PubMed  Google Scholar 

  28. Sawai H, Okada Y, Funahashi H, Matsuo Y, Takahashi H, Takeyama H et al. Interleukin-1alpha enhances the aggressive behavior of pancreatic cancer cells by regulating the alpha6beta1-integrin and urokinase plasminogen activator receptor expression. BMC Cell Biol 2006; 7: 8.

    PubMed  PubMed Central  Google Scholar 

  29. Sawai H, Yamamoto M, Okada Y, Sato M, Akamo Y, Takeyama H et al. Alteration of integrins by interleukin-1alpha in human pancreatic cancer cells. Pancreas 2001; 23: 399–405.

    CAS  PubMed  Google Scholar 

  30. Sawai H, Funahashi H, Okada Y, Matsuo Y, Sakamoto M, Yamamoto M et al. Interleukin-1alpha enhances IL-8 secretion through p38 mitogen-activated protein kinase and reactive oxygen species signaling in human pancreatic cancer cells. Med Sci Monit 2005; 11: BR343–BR350.

    CAS  PubMed  Google Scholar 

  31. Tang RF, Wang SX, Zhang FR, Peng L, Xiao Y, Zhang M . Interleukin-1 alpha, 6 regulate the secretion of vascular endothelial growth factor A, C in pancreatic cancer. Hepatobiliary Pancreat Dis Int 2005; 4: 460–463.

    CAS  PubMed  Google Scholar 

  32. Matsuo Y, Sawai H, Ochi N, Yasuda A, Takahashi H, Funahashi H et al. Interleukin-1alpha secreted by pancreatic cancer cells promotes angiogenesis and its therapeutic implications. J Surg Res 2009; 153: 274–281.

    CAS  PubMed  Google Scholar 

  33. Niu J, Li Z, Peng B, Chiao PJ . Identification of an autoregulatory feedback pathway involving interleukin-1alpha in induction of constitutive NF-kappaB activation in pancreatic cancer cells. J Biol Chem 2004; 279: 16452–16462.

    CAS  PubMed  Google Scholar 

  34. Verma G, Bhatia H, Datta M . Gene expression profiling and pathway analysis identify the integrin signaling pathway to be altered by IL-1beta in human pancreatic cancer cells: role of JNK. Cancer Lett 2012; 320: 86–95.

    CAS  PubMed  Google Scholar 

  35. Kiefel H, Bondong S, Erbe-Hoffmann N, Hazin J, Riedle S, Wolf J et al. L1CAM-integrin interaction induces constitutive NF-kappaB activation in pancreatic adenocarcinoma cells by enhancing IL-1beta expression. Oncogene 2010; 29: 4766–4778.

    CAS  PubMed  Google Scholar 

  36. Angst E, Reber HA, Hines OJ, Eibl G . Mononuclear cell-derived interleukin-1 beta confers chemoresistance in pancreatic cancer cells by upregulation of cyclooxygenase-2. Surgery 2008; 144: 57–65.

    PubMed  Google Scholar 

  37. Arlt A, Vorndamm J, Muerkoster S, Yu H, Schmidt WE, Folsch UR et al. Autocrine production of interleukin 1beta confers constitutive nuclear factor kappaB activity and chemoresistance in pancreatic carcinoma cell lines. Cancer Res 2002; 62: 910–916.

    CAS  PubMed  Google Scholar 

  38. Fortis C, Foppoli M, Gianotti L, Galli L, Citterio G, Consogno G et al. Increased interleukin-10 serum levels in patients with solid tumours. Cancer Lett 1996; 104: 1–5.

    CAS  PubMed  Google Scholar 

  39. Smirne C, Camandona M, Alabiso O, Bellone G, Emanuelli G . High serum levels of transforming growth factor-beta1, interleukin-10 and vascular endothelial growth factor in pancreatic adenocarcinoma patients. Minerva Gastroenterol Dietol 1999; 45: 21–27.

    CAS  PubMed  Google Scholar 

  40. Geng L, Huang D, Liu J, Qian Y, Deng J, Li D et al. B7-H1 up-regulated expression in human pancreatic carcinoma tissue associates with tumor progression. J Cancer Res Clin Oncol 2008; 134: 1021–1027.

    CAS  PubMed  Google Scholar 

  41. Bellone G, Smirne C, Mauri FA, Tonel E, Carbone A, Buffolino A et al. Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival. Cancer Immunol Immunother 2006; 55: 684–698.

    CAS  PubMed  Google Scholar 

  42. Bellone G, Turletti A, Artusio E, Mareschi K, Carbone A, Tibaudi D et al. Tumor-associated transforming growth factor-beta and interleukin-10 contribute to a systemic Th2 immune phenotype in pancreatic carcinoma patients. Am J Pathol 1999; 155: 537–547.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Andrianifahanana M, Chauhan SC, Choudhury A, Moniaux N, Brand RE, Sasson AA et al. MUC4-expressing pancreatic adenocarcinomas show elevated levels of both T1 and T2 cytokines: potential pathobiologic implications. Am J Gastroenterol 2006; 101: 2319–2329.

    CAS  PubMed  Google Scholar 

  44. von Bernstorff W, Voss M, Freichel S, Schmid A, Vogel I, Johnk C et al. Systemic and local immunosuppression in pancreatic cancer patients. Clin Cancer Res 2001; 7 (3 Suppl): 925s–932s.

    CAS  PubMed  Google Scholar 

  45. Bang S, Kim HS, Choo YS, Park SW, Chung JB, Song SY . Differences in immune cells engaged in cell-mediated immunity after chemotherapy for far advanced pancreatic cancer. Pancreas 2006; 32: 29–36.

    PubMed  Google Scholar 

  46. Tan MC, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE et al. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J immunol 2009; 182: 1746–1755.

    CAS  PubMed  Google Scholar 

  47. Scola L, Giacalone A, Marasa L, Mirabile M, Vaccarino L, Forte GI et al. Genetic determined downregulation of both type 1 and type 2 cytokine pathways might be protective against pancreatic cancer. Ann N Y Acad Sci 2009; 1155: 284–288.

    CAS  PubMed  Google Scholar 

  48. Poch B, Lotspeich E, Ramadani M, Gansauge S, Beger HG, Gansauge F . Systemic immune dysfunction in pancreatic cancer patients. Langenbecks Arch Surg 2007; 392: 353–358.

    PubMed  Google Scholar 

  49. Feurino LW, Fisher WE, Bharadwaj U, Yao Q, Chen C, Li M . Current update of cytokines in pancreatic cancer: pathogenic mechanisms, clinical indication, and therapeutic values. Cancer Invest 2006; 24: 696–703.

    CAS  PubMed  Google Scholar 

  50. Talar-Wojnarowska R, Gasiorowska A, Smolarz B, Romanowicz-Makowska H, Kulig A, Malecka-Panas E . Tumor necrosis factor alpha and interferon gamma genes polymorphisms and serum levels in pancreatic adenocarcinoma. Neoplasma 2009; 56: 56–62.

    CAS  PubMed  Google Scholar 

  51. Allen SJ, Crown SE, Handel TM . Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol. 2007; 25: 787–820.

    CAS  PubMed  Google Scholar 

  52. Li A, King J, Moro A, Sugi MD, Dawson DW, Kaplan J et al. Overexpression of CXCL5 is associated with poor survival in patients with pancreatic cancer. Am J Pathol 2011; 178: 1340–1349.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cui K, Zhao W, Wang C, Wang A, Zhang B, Zhou W et al. The CXCR4-CXCL12 pathway facilitates the progression of pancreatic cancer via induction of angiogenesis and lymphangiogenesis. J Surg Res 2011; 171: 143–150.

    CAS  PubMed  Google Scholar 

  54. Sakamoto H, Kimura H, Sekijima M, Matsumoto K, Arao T, Chikugo T et al. Plasma concentrations of angiogenesis-related molecules in patients with pancreatic cancer. Jpn J Clin Oncol 2012; 42: 105–112.

    PubMed  Google Scholar 

  55. Hill KS, Gaziova I, Harrigal L, Guerra YA, Qiu S, Sastry SK et al. Met receptor tyrosine kinase signaling induces secretion of the angiogenic chemokine interleukin-8/CXCL8 in pancreatic cancer. PLoS ONE 2012; 7: e40420.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen Y, Shi M, Yu GZ, Qin XR, Jin G, Chen P et al. Interleukin-8, a promising predictor for prognosis of pancreatic cancer. World J Gastroenterol 2012; 18: 1123–1129.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ijichi H, Chytil A, Gorska AE, Aakre ME, Bierie B, Tada M et al. Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. J Clin Invest 2011; 121: 4106–4117.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sperveslage J, Frank S, Heneweer C, Egberts J, Schniewind B, Buchholz M et al. Lack of CCR7 expression is rate limiting for lymphatic spread of pancreatic ductal adenocarcinoma. Int J Cancer 2012; 131: E371–E381.

    CAS  PubMed  Google Scholar 

  59. Kimsey TF, Campbell AS, Albo D, Wilson M, Wang TN . Co-localization of macrophage inflammatory protein-3alpha (Mip-3alpha) and its receptor, CCR6, promotes pancreatic cancer cell invasion. Cancer J 2004; 10: 374–380.

    CAS  PubMed  Google Scholar 

  60. Ben-Baruch A . Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol 2006; 16: 38–52.

    CAS  PubMed  Google Scholar 

  61. Tjomsland V, Niklasson L, Sandstrom P, Borch K, Druid H, Bratthall C et al. The desmoplastic stroma plays an essential role in the accumulation and modulation of infiltrated immune cells in pancreatic adenocarcinoma. Clin Dev Immunol 2011; 2011: 212810.

    PubMed  PubMed Central  Google Scholar 

  62. Monti P, Leone BE, Marchesi F, Balzano G, Zerbi A, Scaltrini F et al. The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res 2003; 63: 7451–7461.

    CAS  PubMed  Google Scholar 

  63. Garbe AI, Vermeer B, Gamrekelashvili J, von Wasielewski R, Greten FR, Westendorf AM et al. Genetically induced pancreatic adenocarcinoma is highly immunogenic and causes spontaneous tumor-specific immune responses. Cancer Res 2006; 66: 508–516.

    CAS  PubMed  Google Scholar 

  64. Okudaira K, Tsuzuki Y, Hokari R, Miyazaki J, Mataki N, Komoto S et al. Effects of intratumoral injection of CCL2 on monocyte-endothelial cell interactions in mouse pancreatic cancer. Microcirculation 2007; 14: 241–251.

    CAS  PubMed  Google Scholar 

  65. Monti P, Marchesi F, Reni M, Mercalli A, Sordi V, Zerbi A et al. A comprehensive in vitro characterization of pancreatic ductal carcinoma cell line biological behavior and its correlation with the structural and genetic profile. Virchows Arch 2004; 445: 236–247.

    CAS  PubMed  Google Scholar 

  66. Makinoshima H, Dezawa M . Pancreatic cancer cells activate CCL5 expression in mesenchymal stromal cells through the insulin-like growth factor-I pathway. FEBS Lett 2009; 583: 3697–3703.

    CAS  PubMed  Google Scholar 

  67. Zischek C, Niess H, Ischenko I, Conrad C, Huss R, Jauch KW et al. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg 2009; 250: 747–753.

    PubMed  Google Scholar 

  68. Balkwill FR . The chemokine system and cancer. J Pathol 2012; 226: 148–157.

    CAS  PubMed  Google Scholar 

  69. Marchesi F, Piemonti L, Fedele G, Destro A, Roncalli M, Albarello L et al. The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Cancer Res 2008; 68: 9060–9069.

    CAS  PubMed  Google Scholar 

  70. Lawrence T, Natoli G . Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 2011; 11: 750–761.

    CAS  PubMed  Google Scholar 

  71. Ruffell B, Affara NI, Coussens LM . Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012; 33: 119–126.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res 2011; 167: e211–e219.

    PubMed  Google Scholar 

  73. Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer 2013; 108: 914–923.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH . Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 2007; 67: 9518–9527.

    CAS  PubMed  Google Scholar 

  75. Yamasaki A, Kameda C, Xu R, Tanaka H, Tasaka T, Chikazawa N et al. Nuclear factor kappaB-activated monocytes contribute to pancreatic cancer progression through the production of Shh. Cancer Immunol Immunother 2010; 59: 675–686.

    CAS  PubMed  Google Scholar 

  76. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011; 331: 1612–1616.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Greten TF, Manns MP, Korangy F . Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 2011; 11: 802–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Goedegebuure P, Mitchem JB, Porembka MR, Tan MC, Belt BA, Wang-Gillam A et al. Myeloid-derived suppressor cells: general characteristics and relevance to clinical management of pancreatic cancer. Curr Cancer Drug Targets 2011; 11: 734–751.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Porembka MR, Mitchem JB, Belt BA, Hsieh CS, Lee HM, Herndon J et al. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother 2012; 61: 1373–1385.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D . Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 2012; 21: 836–847.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012; 21: 822–835.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN. Cancer Cell 2009; 16: 183–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Reid MD, Basturk O, Thirabanjasak D, Hruban RH, Klimstra DS, Bagci P et al. Tumor-infiltrating neutrophils in pancreatic neoplasia. Mod Pathol 2011; 24: 1612–1619.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Benson DD, Meng X, Fullerton DA, Moore EE, Lee JH, Ao L et al. Activation state of stromal inflammatory cells in murine metastatic pancreatic adenocarcinoma. Am J Physiol Regul Integr Comp Physiol 2012; 302: R1067–R1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hodges K, Kennedy L, Meng F, Alpini G, Francis H . Mast cells, disease and gastrointestinal cancer: A comprehensive review of recent findings. Transl Gastrointest Cancer 2012; 1: 138–150.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Esposito I, Kleeff J, Bischoff SC, Fischer L, Collecchi P, Iorio M et al. The stem cell factor-c-kit system and mast cells in human pancreatic cancer. Lab Invest 2002; 82: 1481–1492.

    CAS  PubMed  Google Scholar 

  87. Esposito I, Menicagli M, Funel N, Bergmann F, Boggi U, Mosca F et al. Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol 2004; 57: 630–636.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Strouch MJ, Cheon EC, Salabat MR, Krantz SB, Gounaris E, Melstrom LG et al. Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin Cancer Res 2010; 16: 2257–2265.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chang DZ, Ma Y, Ji B, Wang H, Deng D, Liu Y et al. Mast cells in tumor microenvironment promotes the in vivo growth of pancreatic ductal adenocarcinoma. Clin Cancer Res 2011; 17: 7015–7023.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cai SW, Yang SZ, Gao J, Pan K, Chen JY, Wang YL et al. Prognostic significance of mast cell count following curative resection for pancreatic ductal adenocarcinoma. Surgery 2011; 149: 576–584.

    PubMed  Google Scholar 

  91. Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI . Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 2007; 13: 1211–1218.

    CAS  PubMed  Google Scholar 

  92. Evans A, Costello E . The role of inflammatory cells in fostering pancreatic cancer cell growth and invasion. Front Physiol 2012; 3: 270.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V . Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12: 253–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    CAS  PubMed  Google Scholar 

  95. Steinman RM . The control of immunity and tolerance by dendritic cell. Pathol Biol 2003; 51: 59–60.

    CAS  PubMed  Google Scholar 

  96. Pinzon-Charry A, Maxwell T, Lopez JA . Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 2005; 83: 451–461.

    CAS  PubMed  Google Scholar 

  97. Dallal RM, Christakos P, Lee K, Egawa S, Son YI, Lotze MT . Paucity of dendritic cells in pancreatic cancer. Surgery 2002; 131: 135–138.

    PubMed  Google Scholar 

  98. Bellone G, Carbone A, Smirne C, Scirelli T, Buffolino A, Novarino A et al. Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol 2006; 177: 3448–3460.

    CAS  PubMed  Google Scholar 

  99. Perrot I, Blanchard D, Freymond N, Isaac S, Guibert B, Pacheco Y et al. Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J Immunol 2007; 178: 2763–2769.

    CAS  PubMed  Google Scholar 

  100. Lee BN, Follen M, Rodriquez G, Shen DY, Malpica A, Shearer WT et al. Deficiencies in myeloid antigen-presenting cells in women with cervical squamous intraepithelial lesions. Cancer 2006; 107: 999–1007.

    CAS  PubMed  Google Scholar 

  101. Ormandy LA, Farber A, Cantz T, Petrykowska S, Wedemeyer H, Horning M et al. Direct ex vivo analysis of dendritic cells in patients with hepatocellular carcinoma. World J Gastroenterol 2006; 12: 3275–3282.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Pinzon-Charry A, Ho CS, Maxwell T, McGuckin MA, Schmidt C, Furnival C et al. Numerical and functional defects of blood dendritic cells in early- and late-stage breast cancer. Br J Cancer 2007; 97: 1251–1259.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gabrilovich D . Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 2004; 4: 941–952.

    CAS  PubMed  Google Scholar 

  104. Bharadwaj U, Li M, Zhang R, Chen C, Yao Q . Elevated interleukin-6 and G-CSF in human pancreatic cancer cell conditioned medium suppress dendritic cell differentiation and activation. Cancer Res 2007; 67: 5479–5488.

    CAS  PubMed  Google Scholar 

  105. Du J, Wang J, Tan G, Cai Z, Zhang L, Tang B et al. Aberrant elevated microRNA-146a in dendritic cells (DC) induced by human pancreatic cancer cell line BxPC-3-conditioned medium inhibits DC maturation and activation. Med Oncol 2012; 29: 2814–2823.

    CAS  PubMed  Google Scholar 

  106. Yanagimoto H, Takai S, Satoi S, Toyokawa H, Takahashi K, Terakawa N et al. Impaired function of circulating dendritic cells in patients with pancreatic cancer. Clin Immunol 2005; 114: 52–60.

    CAS  PubMed  Google Scholar 

  107. Hirooka S, Yanagimoto H, Satoi S, Yamamoto T, Toyokawa H, Yamaki S et al. The role of circulating dendritic cells in patients with unresectable pancreatic cancer. Anticancer Res 2011; 31: 3827–3834.

    CAS  PubMed  Google Scholar 

  108. Fukunaga A, Miyamoto M, Cho Y, Murakami S, Kawarada Y, Oshikiri T et al. CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 2004; 28: e26–e31.

    PubMed  Google Scholar 

  109. Norian LA, Rodriguez PC, O'Mara LA, Zabaleta J, Ochoa AC, Cella M et al. Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism. Cancer Res 2009; 69: 3086–3094.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E et al. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 2005; 202: 919–929.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 2010; 16: 880–886.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Mancino A, Schioppa T, Larghi P, Pasqualini F, Nebuloni M, Chen IH et al. Divergent effects of hypoxia on dendritic cell functions. Blood 2008; 112: 3723–3734.

    CAS  PubMed  Google Scholar 

  113. Elia AR, Cappello P, Puppo M, Fraone T, Vanni C, Eva A et al. Human dendritic cells differentiated in hypoxia down-modulate antigen uptake and change their chemokine expression profile. J Leukoc Biol 2008; 84: 1472–1482.

    CAS  PubMed  Google Scholar 

  114. Yang M, Ma C, Liu S, Shao Q, Gao W, Song B et al. HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol Cell Biol 2010; 88: 165–171.

    CAS  PubMed  Google Scholar 

  115. Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S . MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med 2012; 209: 1671–1687.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kaisho T, Hoshino K, Iwabe T, Takeuchi O, Yasui T, Akira S . Endotoxin can induce MyD88-deficient dendritic cells to support T(h)2 cell differentiation. Int Immunol 2002; 14: 695–700.

    CAS  PubMed  Google Scholar 

  117. Kapsenberg ML . Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 2003; 3: 984–993.

    CAS  PubMed  Google Scholar 

  118. Chen L, Lei L, Chang X, Li Z, Lu C, Zhang X et al. Mice deficient in MyD88 develop a Th2-dominant response and severe pathology in the upper genital tract following Chlamydia muridarum infection. J Immunol 2010; 184: 2602–2610.

    CAS  PubMed  Google Scholar 

  119. Smyth MJ, Dunn GP, Schreiber RD . Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 2006; 90: 1–50.

    CAS  PubMed  Google Scholar 

  120. Dunn GP, Old LJ, Schreiber RD . The three Es of cancer immunoediting. Annu Rev Immunol 2004; 22: 329–360.

    CAS  PubMed  Google Scholar 

  121. Schreiber RD, Pace JL, Russell SW, Altman A, Katz DH . Macrophage-activating factor produced by a T cell hybridoma: physiochemical and biosynthetic resemblance to gamma-interferon. J Immunol 1983; 131: 826–832.

    CAS  PubMed  Google Scholar 

  122. Nathan CF, Murray HW, Wiebe ME, Rubin BY . Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 1983; 158: 670–689.

    CAS  PubMed  Google Scholar 

  123. MacMicking J, Xie QW, Nathan C . Nitric oxide and macrophage function. Annu Rev Immunol 1997; 15: 323–350.

    CAS  PubMed  Google Scholar 

  124. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 2011; 29: 1949–1955.

    PubMed  Google Scholar 

  125. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313: 1960–1964.

    CAS  PubMed  Google Scholar 

  126. Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 2009; 27: 5944–5951.

    CAS  PubMed  Google Scholar 

  127. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005; 102: 18538–18543.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003; 348: 203–213.

    CAS  PubMed  Google Scholar 

  129. Ashida A, Boku N, Aoyagi K, Sato H, Tsubosa Y, Minashi K et al. Expression profiling of esophageal squamous cell carcinoma patients treated with definitive chemoradiotherapy: clinical implications. Int J Oncol 2006; 28: 1345–1352.

    CAS  PubMed  Google Scholar 

  130. Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M et al. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res 2001; 61: 5132–5136.

    CAS  PubMed  Google Scholar 

  131. Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T et al. Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 2008; 113: 1387–1395.

    CAS  PubMed  Google Scholar 

  132. Ademmer K, Ebert M, Muller-Ostermeyer F, Friess H, Buchler MW, Schubert W et al. Effector T lymphocyte subsets in human pancreatic cancer: detection of CD8+CD18+ cells and CD8+CD103+ cells by multi-epitope imaging. Clin Exp Immunol 1998; 112: 21–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kim JS, Park YS, Kim JY, Kim YG, Kim YJ, Lee HK et al. Inhibition of human pancreatic tumor growth by cytokine-induced killer cells in nude mouse xenograft model. Immune Netw 2012; 12: 247–252.

    PubMed  PubMed Central  Google Scholar 

  134. Yu X . CD8+ T cells are compromised in human pancreatic cancer. Transl Med 2012; 2: 105.

    Google Scholar 

  135. Pignatelli M, Ansari TW, Gunter P, Liu D, Hirano S, Takeichi M et al. Loss of membranous E-cadherin expression in pancreatic cancer: correlation with lymph node metastasis, high grade, and advanced stage. J Pathol 1994; 174: 243–248.

    CAS  PubMed  Google Scholar 

  136. Friess H, Yamanaka Y, Buchler M, Ebert M, Beger HG, Gold LI et al. Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 1993; 105: 1846–1856.

    CAS  PubMed  Google Scholar 

  137. Ellermeier J, Wei J, Duewell P, Hoves S, Stieg MR, Adunka T et al. Therapeutic efficacy of bifunctional siRNA combining TGF-beta1 silencing with RIG-I activation in pancreatic cancer. Cancer Res 2013; 73: 1709–1720.

    CAS  PubMed  Google Scholar 

  138. Zoglmeier C, Bauer H, Norenberg D, Wedekind G, Bittner P, Sandholzer N et al. CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res 2011; 17: 1765–1775.

    CAS  PubMed  Google Scholar 

  139. Pilon-Thomas S, Nelson N, Vohra N, Jerald M, Pendleton L, Szekeres K et al. Murine pancreatic adenocarcinoma dampens SHIP-1 expression and alters MDSC homeostasis and function. PLoS ONE 2011; 6: e27729.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E et al. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 2011; 121: 4015–4029.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Xiao M, Wang C, Zhang J, Li Z, Zhao X, Qin Z . IFNgamma promotes papilloma development by up-regulating Th17-associated inflammation. Cancer Res 2009; 69: 2010–2017.

    CAS  PubMed  Google Scholar 

  142. He D, Li H, Yusuf N, Elmets CA, Li J, Mountz JD et al. IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J Immunol 2010; 184: 2281–2288.

    CAS  PubMed  Google Scholar 

  143. Zhang JP, Yan J, Xu J, Pang XH, Chen MS, Li L et al. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol 2009; 50: 980–989.

    CAS  PubMed  Google Scholar 

  144. Zhang Q, Liu S, Ge D, Xue Y, Xiong Z, Abdel-Mageed AB et al. Interleukin-17 promotes formation and growth of prostate adenocarcinoma in mouse models. Cancer Res 2012; 72: 2589–2599.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen X, Wan J, Liu J, Xie W, Diao X, Xu J et al. Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer 2010; 69: 348–354.

    PubMed  Google Scholar 

  146. Zhang B, Rong G, Wei H, Zhang M, Bi J, Ma L et al. The prevalence of Th17 cells in patients with gastric cancer. Biochem Biophys Res Commun 2008; 374: 533–537.

    CAS  PubMed  Google Scholar 

  147. Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res 2011; 71: 1263–1271.

    CAS  PubMed  Google Scholar 

  148. Chen JG, Xia JC, Liang XT, Pan K, Wang W, Lv L et al. Intratumoral expression of IL-17 and its prognostic role in gastric adenocarcinoma patients. Int J Biol Sci 2011; 7: 53–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Gnerlich JL, Mitchem JB, Weir JS, Sankpal NV, Kashiwagi H, Belt BA et al. Induction of Th17 cells in the tumor microenvironment improves survival in a murine model of pancreatic cancer. J Immunol 2010; 185: 4063–4071.

    CAS  PubMed  Google Scholar 

  150. He S, Fei M, Wu Y, Zheng D, Wan D, Wang L et al. Distribution and clinical significance of th17 cells in the tumor microenvironment and peripheral blood of pancreatic cancer patients. Int J Mol Sci 2011; 12: 7424–7437.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Vizio B, Novarino A, Giacobino A, Cristiano C, Prati A, Ciuffreda L et al. Potential plasticity of T regulatory cells in pancreatic carcinoma in relation to disease progression and outcome. Exp Ther Med 2012; 4: 70–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Fridman WH, Pages F, Sautes-Fridman C, Galon J . The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12: 298–306.

    CAS  PubMed  Google Scholar 

  153. De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med 2011; 208: 469–478.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Ubukata H, Motohashi G, Tabuchi T, Nagata H, Konishi S . Evaluations of interferon-gamma/interleukin-4 ratio and neutrophil/lymphocyte ratio as prognostic indicators in gastric cancer patients. J Surg Oncol 2010; 102: 742–747.

    PubMed  Google Scholar 

  155. Kusuda T, Shigemasa K, Arihiro K, Fujii T, Nagai N, Ohama K . Relative expression levels of Th1 and Th2 cytokine mRNA are independent prognostic factors in patients with ovarian cancer. Oncol Rep 2005; 13: 1153–1158.

    CAS  PubMed  Google Scholar 

  156. Tatsumi T, Kierstead LS, Ranieri E, Gesualdo L, Schena FP, Finke JH et al. Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T cell responses against MAGE-6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma. J Exp Med 2002; 196: 619–628.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Nevala WK, Vachon CM, Leontovich AA, Scott CG, Thompson MA, Markovic SN et al. Evidence of systemic Th2-driven chronic inflammation in patients with metastatic melanoma. Clin Cancer Res 2009; 15: 1931–1939.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Mantovani A, Allavena P, Sica A, Balkwill F . Cancer-related inflammation. Nature 2008; 454: 436–444.

    CAS  PubMed  Google Scholar 

  159. Osawa E, Nakajima A, Fujisawa T, Kawamura YI, Toyama-Sorimachi N, Nakagama H et al. Predominant T helper type 2-inflammatory responses promote murine colon cancers. Int J Cancer 2006; 118: 2232–2236.

    CAS  PubMed  Google Scholar 

  160. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW . Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 2011; 60: 1419–1430.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Tassi E, Gavazzi F, Albarello L, Senyukov V, Longhi R, Dellabona P et al. Carcinoembryonic antigen-specific but not antiviral CD4+ T cell immunity is impaired in pancreatic carcinoma patients. J Immunol 2008; 181: 6595–6603.

    CAS  PubMed  Google Scholar 

  162. Liu YJ, Soumelis V, Watanabe N, Ito T, Wang YH, Malefyt Rde W et al. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu Rev Immunol 2007; 25: 193–219.

    CAS  PubMed  Google Scholar 

  163. Wynn TA . Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 2004; 4: 583–594.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Formentini A, Prokopchuk O, Strater J, Kleeff J, Grochola LF, Leder G et al. Interleukin-13 exerts autocrine growth-promoting effects on human pancreatic cancer, and its expression correlates with a propensity for lymph node metastases. Int J Colorectal Dis 2009; 24: 57–67.

    PubMed  Google Scholar 

  165. Kornmann M, Kleeff J, Debinski W, Korc M . Pancreatic cancer cells express interleukin-13 and -4 receptors, and their growth is inhibited by Pseudomonas exotoxin coupled to interleukin-13 and -4. Anticancer Res 1999; 19: 125–131.

    CAS  PubMed  Google Scholar 

  166. Zurawski G, de Vries JE . Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol Today 1994; 15: 19–26.

    CAS  PubMed  Google Scholar 

  167. Skinnider BF, Elia AJ, Gascoyne RD, Trumper LH, von Bonin F, Kapp U et al. Interleukin 13 and interleukin 13 receptor are frequently expressed by Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 2001; 97: 250–255.

    CAS  PubMed  Google Scholar 

  168. Tassi E, Braga M, Longhi R, Gavazzi F, Parmiani G, Di Carlo V et al. Non-redundant role for IL-12 and IL-27 in modulating Th2 polarization of carcinoembryonic antigen specific CD4 T cells from pancreatic cancer patients. PLoS ONE 2009; 4: e7234.

    PubMed  PubMed Central  Google Scholar 

  169. Leffers N, Gooden MJ, de Jong RA, Hoogeboom BN, ten Hoor KA, Hollema H et al. Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother 2009; 58: 449–459.

    PubMed  Google Scholar 

  170. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA. 2005; 102: 18538–18543.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang YL, Li J, Mo HY, Qiu F, Zheng LM, Qian CN et al. Different subsets of tumor infiltrating lymphocytes correlate with NPC progression in different ways. Mol Cancer 2010; 9: 4.

    PubMed  PubMed Central  Google Scholar 

  172. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    CAS  PubMed  Google Scholar 

  173. Hiraoka N, Onozato K, Kosuge T, Hirohashi S . Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 2006; 12: 5423–5434.

    CAS  PubMed  Google Scholar 

  174. Clark EJ, Connor S, Taylor MA, Madhavan KK, Garden OJ, Parks RW . Preoperative lymphocyte count as a prognostic factor in resected pancreatic ductal adenocarcinoma. HP 2007; 9: 456–460.

    CAS  Google Scholar 

  175. Moo-Young TA, Larson JW, Belt BA, Tan MC, Hawkins WG, Eberlein TJ et al. Tumor-derived TGF-beta mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer. J Immunother 2009; 32: 12–21.

    CAS  PubMed  Google Scholar 

  176. Kulhankova K, Rouse T, Nasr ME, Field EH . Dendritic cells control CD4+CD25+ Treg cell suppressor function in vitro through juxtacrine delivery of IL-2. PLoS One 2012; 7: e43609.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Sgouroudis E, Kornete M, Piccirillo CA . IL-2 production by dendritic cells promotes Foxp3(+) regulatory T-cell expansion in autoimmune-resistant NOD congenic mice. Autoimmunity 2011; 44: 406–414.

    CAS  PubMed  Google Scholar 

  178. Huang B, Zhao J, Unkeless JC, Feng ZH, Xiong H . TLR signaling by tumor and immune cells: a double-edged sword. Oncogene 2008; 27: 218–224.

    CAS  PubMed  Google Scholar 

  179. Rakoff-Nahoum S, Medzhitov R . Toll-like receptors and cancer. Nat Rev Cancer 2009; 9: 57–63.

    CAS  PubMed  Google Scholar 

  180. Ochi A, Graffeo CS, Zambirinis CP, Rehman A, Hackman M, Fallon N et al. Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans. J Clin Invest 2012; 1122: 4118–4129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Algül.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wörmann, S., Diakopoulos, K., Lesina, M. et al. The immune network in pancreatic cancer development and progression. Oncogene 33, 2956–2967 (2014). https://doi.org/10.1038/onc.2013.257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.257

Keywords

This article is cited by

Search

Quick links