Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance

Abstract

Despite advances in biology and therapeutic modalities, existence of highly tumorigenic glioma stem-like cells (GSCs) makes glioblastomas (GBMs) invincible. N6-methyl adenosine (m6A), one of the abundant mRNA modifications catalyzed by methyltransferase-like 3 and 14 (METTL3/14), influences various events in RNA metabolism. Here, we report the crucial role of METTL3-mediated m6A modification in GSC (neurosphere) maintenance and dedifferentiation of glioma cells. METTL3 expression is elevated in GSC and attenuated during differentiation. RNA immunoprecipitation studies identified SOX2 as a bonafide m6A target of METTL3 and the m6A modification of SOX2 mRNA by METTL3 enhanced its stability. The exogenous overexpression of 3′UTR-less SOX2 significantly alleviated the inhibition of neurosphere formation observed in METTL3 silenced GSCs. METTL3 binding and m6A modification in vivo required intact three METTL3/m6A sites present in the SOX2-3′UTR. Further, we found that the recruitment of Human antigen R (HuR) to m6A-modified RNA is essential for SOX2 mRNA stabilization by METTL3. In addition, we found a preferential binding by HuR to the m6A-modified transcripts globally. METTL3 silenced GSCs showed enhanced sensitivity to γ-irradiation and reduced DNA repair as evidenced from the accumulation of γ-H2AX. Exogenous overexpression of 3′UTR-less SOX2 in METTL3 silenced GSCs showed efficient DNA repair and also resulted in the significant rescue of neurosphere formation from METTL3 silencing induced radiosensitivity. Silencing METTL3 inhibited RasV12 mediated transformation of mouse immortalized astrocytes. GBM tumors have elevated levels of METTL3 transcripts and silencing METTL3 in U87/TIC inhibited tumor growth in an intracranial orthotopic mouse model with prolonged mice survival. METTL3 transcript levels predicted poor survival in GBMs which are enriched for GSC-specific signature. Thus our study reports the importance of m6A modification in GSCs and uncovers METTL3 as a potential molecular target in GBM therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10: 459–466.

    Article  CAS  PubMed  Google Scholar 

  2. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN . Cancer stem cells in glioblastoma. Genes Dev 2015; 29: 1203–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Suva ML, Rheinbay E, Gillespie SM, Patel AP, Wakimoto H, Rabkin SD et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 2014; 157: 580–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 2016; 534: 575–578.

    Article  CAS  PubMed  Google Scholar 

  5. Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B, Jung JW et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 2015; 519: 486–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014; 505: 117–120.

    Article  PubMed  Google Scholar 

  7. Choi J, Ieong KW, Demirci H, Chen J, Petrov A, Prabhakar A et al. N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat Struct Mol Biol 2016; 23: 110–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O et al. 5' UTR m(6)A promotes cap-independent translation. Cell 2015; 163: 999–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 2015; 161: 1388–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF . N6-methyladenosine marks primary microRNAs for processing. Nature 2015; 519: 482–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 2015; 347: 1002–1006.

    Article  CAS  PubMed  Google Scholar 

  12. Ben-David U, Benvenisty N . The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 2011; 11: 268–277.

    Article  CAS  PubMed  Google Scholar 

  13. Wakimoto H, Mohapatra G, Kanai R, Curry WT Jr, Yip S, Nitta M et al. Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells. Neuro-oncology 2012; 14: 132–144.

    Article  CAS  PubMed  Google Scholar 

  14. Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, Amariglio N, Rechavi G . Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc 2013; 8: 176–189.

    Article  CAS  PubMed  Google Scholar 

  15. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR . Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 2012; 149: 1635–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014; 24: 177–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Filippova N, Yang X, Wang Y, Gillespie GY, Langford C, King PH et al. The RNA-binding protein HuR promotes glioma growth and treatment resistance. Mol Cancer Res 2011; 9: 648–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pullmann R Jr, Kim HH, Abdelmohsen K, Lal A, Martindale JL, Yang X et al. Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs. Mol Cell Biol 2007; 27: 6265–6278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cho DY, Lin SZ, Yang WK, Lee HC, Hsu DM, Lin HL et al. Targeting cancer stem cells for treatment of glioblastoma multiforme. Cell Transplant 2013; 22: 731–739.

    Article  PubMed  Google Scholar 

  20. Kim BW, Cho H, Choi CH, Ylaya K, Chung JY, Kim JH et al. Clinical significance of OCT4 and SOX2 protein expression in cervical cancer. BMC Cancer 2015; 15: 1015.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee Y, Kim KH, Kim DG, Cho HJ, Kim Y, Rheey J et al. FoxM1 promotes stemness and radio-resistance of glioblastoma by regulating the master stem cell regulator Sox2. PLoS One 2015; 10: e0137703.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shen L, Huang X, Xie X, Su J, Yuan J, Chen X . High expression of SOX2 and OCT4 indicates radiation resistance and an independent negative prognosis in cervical squamous cell carcinoma. J Histochem Cytochem 2014; 62: 499–509.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756–760.

    Article  CAS  PubMed  Google Scholar 

  24. Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 1998; 17: 5497–5508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pierce AJ, Johnson RD, Thompson LH, Jasin M . XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 1999; 13: 2633–2638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schildknecht S, Kirner S, Henn A, Gasparic K, Pape R, Efremova L et al. Characterization of mouse cell line IMA 2.1 as a potential model system to study astrocyte functions. Altex 2012; 29: 261–274.

    Article  PubMed  Google Scholar 

  27. Tuck MT, James CB, Kelder B, Kopchick JJ . Elevation of internal 6-methyladenine mRNA methyltransferase activity after cellular transformation. Cancer Lett 1996; 103: 107–113.

    Article  CAS  PubMed  Google Scholar 

  28. Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 2014; 15: 707–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jackson M, Hassiotou F, Nowak A . Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis 2015; 36: 177–185.

    Article  CAS  PubMed  Google Scholar 

  30. Lee G, Auffinger B, Guo D, Hasan T, Deheeger M, Tobias AL et al. Dedifferentiation of glioma cells to glioma stem-like cells by therapeutic stress-induced HIF signaling in the recurrent GBM model. Mol Cancer Ther 2016; 15: 3064–3076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Allamand V, Richard P, Lescure A, Ledeuil C, Desjardin D, Petit N et al. A single homozygous point mutation in a 3'untranslated region motif of selenoprotein N mRNA causes SEPN1-related myopathy. EMBO Rep 2006; 7: 450–454.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Halvorsen M, Martin JS, Broadaway S, Laederach A . Disease-associated mutations that alter the RNA structural ensemble. PLoS Genet 2010; 6: e1001074.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Martin ME, Fargion S, Brissot P, Pellat B, Beaumont C . A point mutation in the bulge of the iron-responsive element of the L ferritin gene in two families with the hereditary hyperferritinemia-cataract syndrome. Blood 1998; 91: 319–323.

    CAS  PubMed  Google Scholar 

  34. Lim YC, Roberts TL, Day BW, Stringer BW, Kozlov S, Fazry S et al. Increased sensitivity to ionizing radiation by targeting the homologous recombination pathway in glioma initiating cells. Mol Oncol 2014; 8: 1603–1615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of blioblastoma stem cells. Cell Rep 2017; 18: 2622–2634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 2017; 31: 591–606 e596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell 2017; 31: 127–141.

    Article  PubMed  Google Scholar 

  38. Zhang C, Zhi WI, Lu H, Samanta D, Chen I, Gabrielson E et al. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget 2016; 7: 64527–64542.

    PubMed  PubMed Central  Google Scholar 

  39. Bansal H, Yihua Q, Iyer SP, Ganapathy S, Proia DA, Penalva LO et al. WTAP is a novel oncogenic protein in acute myeloid leukemia. Leukemia 2014; 28: 1171–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin S, Choe J, Du P, Triboulet R, Gregory RI . The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell 2016; 62: 335–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T . N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 2015; 518: 560–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kwok CT, Marshall AD, Rasko JE, Wong JJ . Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia. J Hematol Oncol 2017; 10: 39.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z, Sheng W et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature 2017; 543: 573–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yi C, Pan T . Cellular dynamics of RNA modification. Acc Chem Res 2011; 44: 1380–1388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hongay CF, Orr-Weaver TL . Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis. Proc Natl Acad Sci USA 2011; 108: 14855–14860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen T, Hao YJ, Zhang Y, Li MM, Wang M, Han W et al. m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 2015; 16: 289–301.

    Article  CAS  PubMed  Google Scholar 

  47. Aguilo F, Zhang F, Sancho A, Fidalgo M, Di Cecilia S, Vashisht A et al. Coordination of m(6)A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 2015; 17: 689–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC . N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 2014; 16: 191–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Azari H, Millette S, Ansari S, Rahman M, Deleyrolle LP, Reynolds BA . Isolation and expansion of human glioblastoma multiforme tumor cells using the neurosphere assay. J Vis Exp 2011. e3633.

Download references

Acknowledgements

The results published here are in part based upon data generated by The Cancer Genome Atlas (TCGA) pilot project established by the NCI and NHGRI. Information about TCGA and the investigators and institutions, which constitute the TCGA research network, can be found at http://cancergenome.nih.gov/. The use of data sets from Institute NC, GSE76976 and GSE22866 is acknowledged. We thank Dr Hiroaki Wakimoto and Dr Samuel Rabkin for providing GSCs and Dr Kenneth Kousik for 3′UTR-SOX2-Luc construct. KS thanks DST and DBT, Government of India for financial support. KS is a JC Bose Fellow of the Department of Science and Technology. AV acknowledges IISc for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Somasundaram.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visvanathan, A., Patil, V., Arora, A. et al. Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene 37, 522–533 (2018). https://doi.org/10.1038/onc.2017.351

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.351

This article is cited by

Search

Quick links