Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor-associated macrophage-secreted 14-3-3ζ signals via AXL to promote pancreatic cancer chemoresistance

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an inherently chemoresistant tumor. Chemotherapy leads to apoptosis of cancer cells, and in previous studies we have shown that tumor-associated macrophage (TAM) infiltration increases following chemotherapy in PDAC. Since one of the main functions of macrophages is to eliminate apoptotic cells, we hypothesized that TAMs phagocytose chemotherapy-induced apoptotic cells and secrete factors, which favor PDAC chemoresistance. To test this hypothesis, primary human PDAC cultures were treated with conditioned media (CM) from monocyte-derived macrophage cultures incubated with apoptotic PDAC cells (MØApopCM). MØApopCM pretreatment rendered naïve PDAC cells resistant to Gemcitabine- or Abraxane-induced apoptosis. Proteomic analysis of MØApopCM identified YWHAZ/14-3-3 protein zeta/delta (14-3-3ζ), a major regulator of apoptotic cellular pathways, as a potential mediator of chemoresistance, which was subsequently validated in patient transcriptional datasets, serum samples from PDAC patients and using recombinant 14-3-3ζ and inhibitors thereof. Moreover, in mice bearing orthotopic PDAC tumors, the antitumor potential of Gemcitabine was significantly enhanced by elimination of TAMs using clodronate liposomes or by pharmacological inhibition of the Axl receptor tyrosine kinase, a 14-3-3ζ interacting partner. These data highlight a unique regulatory mechanism by which chemotherapy-induced apoptosis acts as a switch to initiate a protumor/antiapoptotic mechanism in PDAC via 14-3-3ζ/Axl signaling, leading to phosphorylation of Akt and activation of cellular prosurvival mechanisms. The data presented therefore challenge the idea that apoptosis of tumor cells is therapeutically beneficial, at least when immune sensor cells, such as macrophages, are present.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.

    Article  CAS  Google Scholar 

  2. Hidalgo M, Cascinu S, Kleeff J, Labianca R, Lohr JM, Neoptolemos J, et al. Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology. 2015;15:8–18.

    Article  Google Scholar 

  3. Ko AH. Progress in the treatment of metastatic pancreatic cancer and the search for next opportunities. J Clin Oncol. 2015;33:1779–86.

    Article  CAS  Google Scholar 

  4. Wang WQ, Liu L, Xu HX, Wu CT, Xiang JF, Xu J, et al. Infiltrating immune cells and gene mutations in pancreatic ductal adenocarcinoma. Br J Surg. 2016;103:1189–99.

    Article  CAS  Google Scholar 

  5. Sica A, Allavena P, Mantovani A. Cancer related inflammation: the macrophage connection. Cancer Lett. 2008;267:204–15.

    Article  CAS  Google Scholar 

  6. Nielsen SR, Quaranta V, Linford A, Emeagi P, Rainer C, Santos A, et al. Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat Cell Biol. 2016;18:549–60.

    Article  CAS  Google Scholar 

  7. Sainz B Jr., Carron E, Vallespinos M, Machado HL. Cancer stem cells and macrophages: implications in tumor biology and therapeutic strategies. Mediators Inflamm. 2016;2016:9012369.

    Article  Google Scholar 

  8. Sainz B Jr., Martin B, Tatari M, Heeschen C, Guerra S. ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells. Cancer Res. 2014;74:7309–20.

    Article  CAS  Google Scholar 

  9. Sainz B Jr., Alcala S, Garcia E, Sanchez-Ripoll Y, Azevedo MM, Cioffi M, et al. Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment. Gut. 2015;64:1921–35.

    Article  CAS  Google Scholar 

  10. Ireland L, Santos A, Ahmed MS, Rainer C, Nielsen SR, Quaranta V, et al. Chemoresistance in pancreatic cancer is driven by stroma-derived insulin-like growth factors. Cancer Res. 2016;76:6851–63.

    Article  CAS  Google Scholar 

  11. Ludwig KF, Du W, Sorrelle NB, Wnuk-Lipinska K, Topalovski M, Toombs JE, et al. Small-molecule inhibition of Axl targets tumor immune suppression and enhances chemotherapy in pancreatic cancer. Cancer Res. 2018;78:246–55.

    Article  CAS  Google Scholar 

  12. Weizman N, Krelin Y, Shabtay-Orbach A, Amit M, Binenbaum Y, Wong RJ, et al. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene. 2014;33:3812–9.

    Article  CAS  Google Scholar 

  13. Zhang X, Chen Y, Hao L, Hou A, Chen X, Li Y, et al. Macrophages induce resistance to 5-fluorouracil chemotherapy in colorectal cancer through the release of putrescine. Cancer Lett. 2016;381:305–13.

    Article  CAS  Google Scholar 

  14. Vakkila J, Lotze MT. Inflammation and necrosis promote tumour growth. Nat Rev Immunol. 2004;4:641–8.

    Article  CAS  Google Scholar 

  15. Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M, et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res. 2013;19:279–90.

    Article  CAS  Google Scholar 

  16. Hu H, Hang JJ, Han T, Zhuo M, Jiao F, Wang LW. The M2 phenotype of tumor-associated macrophages in the stroma confers a poor prognosis in pancreatic cancer. Tumour Biol. 2016;37:8657–64.

    Article  CAS  Google Scholar 

  17. Duvall E, Wyllie AH, Morris RG. Macrophage recognition of cells undergoing programmed cell death (apoptosis). Immunology. 1985;56:351–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324:1457–61.

    Article  CAS  Google Scholar 

  19. Kobayashi R, Deavers M, Patenia R, Rice-Stitt T, Halbe J, Gallardo S, et al. 14-3-3 zeta protein secreted by tumor associated monocytes/macrophages from ascites of epithelial ovarian cancer patients. Cancer Immunol Immunother. 2009;58:247–58.

    Article  CAS  Google Scholar 

  20. Masters SC, Fu H. 14-3-3 proteins mediate an essential anti-apoptotic signal. J Biol Chem. 2001;276:45193–200.

    Article  CAS  Google Scholar 

  21. Khorrami A, Bagheri MS, Tavallaei M, Gharechahi J. The functional significance of 14-3-3 proteins in cancer: focus on lung cancer. Horm Mol Biol Clin Investig. 2017;32:1868–91.

  22. Klemm C, Dommisch H, Goke F, Kreppel M, Jepsen S, Rolf F, et al. Expression profiles for 14-3-3 zeta and CCL20 in pancreatic cancer and chronic pancreatitis. Pathol Res Pract. 2014;210:335–41.

    Article  CAS  Google Scholar 

  23. Martinelli P, Carrillo-de Santa Pau E, Cox T, Sainz B, Jr. Dusetti N, Greenhalf W, et al. GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut. 2016;66:1665–76.

    Article  Google Scholar 

  24. Janky R, Binda MM, Allemeersch J, Van den Broeck A, Govaere O, Swinnen JV, et al. Prognostic relevance of molecular subtypes and master regulators in pancreatic ductal adenocarcinoma. BMC Cancer. 2016;16:632.

    Article  Google Scholar 

  25. Jandaghi P, Najafabadi HS, Bauer AS, Papadakis AI, Fassan M, Hall A, et al. Expression of DRD2 is increased in human pancreatic ductal adenocarcinoma and inhibitors slow tumor growth in mice. Gastroenterology. 2016;151:1218–31.

    Article  CAS  Google Scholar 

  26. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52.

    Article  CAS  Google Scholar 

  27. Eng EW, Bettio A, Ibrahim J, Harrison RE. MTOC reorientation occurs during FcgammaR-mediated phagocytosis in macrophages. Mol Biol Cell. 2007;18:2389–99.

    Article  CAS  Google Scholar 

  28. Matta A, Masui O, Siu KW, Ralhan R. Identification of 14-3-3zeta associated protein networks in oral cancer. Proteomics. 2016;16:1079–89.

    Article  CAS  Google Scholar 

  29. Reichl P, Dengler M, van Zijl F, Huber H, Fuhrlinger G, Reichel C, et al. Axl activates autocrine transforming growth factor-beta signaling in hepatocellular carcinoma. Hepatology. 2015;61:930–41.

    Article  CAS  Google Scholar 

  30. Kariolis MS, Miao YR, Diep A, Nash SE, Olcina MM, Jiang D, et al. Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies. J Clin Invest. 2017;127:183–98.

    Article  Google Scholar 

  31. Korshunov VA. Axl-dependent signalling: a clinical update. Clin Sci (Lond). 2012;122:361–8.

    Article  CAS  Google Scholar 

  32. Powell DW, Rane MJ, Chen Q, Singh S, McLeish KR. Identification of 14-3-3zeta as a protein kinase B/Akt substrate. J Biol Chem. 2002;277:21639–42.

    Article  CAS  Google Scholar 

  33. Wu G, Ma Z, Hu W, Wang D, Gong B, Fan C, et al. Molecular insights of Gas6/TAM in cancer development and therapy. Cell Death Dis. 2017;8:e2700.

    Article  Google Scholar 

  34. Kirane A, Ludwig KF, Sorrelle N, Haaland G, Sandal T, Ranaweera R, et al. Warfarin blocks Gas6-mediated Axl activation required for pancreatic cancer epithelial plasticity and metastasis. Cancer Res. 2015;75:3699–705.

    Article  CAS  Google Scholar 

  35. Gjerdrum C, Tiron C, Hoiby T, Stefansson I, Haugen H, Sandal T, et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc Natl Acad Sci USA. 2010;107:1124–9.

    Article  CAS  Google Scholar 

  36. Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15:73–86.

    Article  CAS  Google Scholar 

  37. Seifert L, Werba G, Tiwari S, Giao Ly NN, Nguy S, Alothman S, et al. Radiation therapy induces macrophages to suppress T-cell responses against pancreatic tumors in mice. Gastroenterology. 2016;150:1659–72 e1655.

    Article  Google Scholar 

  38. Olson OC, Kim H, Quail DF, Foley EA, Joyce JA. Tumor-associated macrophages suppress the cytotoxic activity of antimitotic agents. Cell Rep. 2017;19:101–13.

    Article  CAS  Google Scholar 

  39. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 1998;101:890–8.

    Article  CAS  Google Scholar 

  40. Zhou N, Zhang Y, Zhang X, Lei Z, Hu R, Li H, et al. Exposure of tumor-associated macrophages to apoptotic MCF-7 cells promotes breast cancer growth and metastasis. Int J Mol Sci. 2015;16:11966–82.

    Article  CAS  Google Scholar 

  41. Werba G, Seifert L, Miller G. Necroptotic cell death—an unexpected driver of pancreatic oncogenesis. Cell Cycle. 2016;15:2095–6.

    Article  CAS  Google Scholar 

  42. Matta A, Siu KW, Ralhan R. 14-3-3 zeta as novel molecular target for cancer therapy. Expert Opin Ther Targets. 2012;16:515–23.

    Article  CAS  Google Scholar 

  43. Nywening TM, Wang-Gillam A, Sanford DE, Belt BA, Panni RZ, Cusworth BM, et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 2016;17:651–62.

    Article  CAS  Google Scholar 

  44. D'Costa Z, Jones K, Azad A, van Stiphout R, Lim SY, Gomes AL, et al. Gemcitabine-induced TIMP1 attenuates therapy response and promotes tumor growth and liver metastasis in pancreatic cancer. Cancer Res. 2017;77:5952–62.

    Article  CAS  Google Scholar 

  45. Dengler M, Staufer K, Huber H, Stauber R, Bantel H, Weiss KH, et al. Soluble Axl is an accurate biomarker of cirrhosis and hepatocellular carcinoma development: results from a large scale multicenter analysis. Oncotarget. 2017;8:46234–48.

    Article  Google Scholar 

  46. Wang X, Shen H, Zhangyuan G, Huang R, Zhang W, He Q, et al. 14-3-3zeta delivered by hepatocellular carcinoma-derived exosomes impaired anti-tumor function of tumor-infiltrating T lymphocytes. Cell Death Dis. 2018;9:159.

    Article  Google Scholar 

  47. Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology. 2009;137:1102–13.

    Article  CAS  Google Scholar 

  48. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell. 2005;7:469–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to José Germán Casas for CD14-enriched monocyte preparations, Carmen Sánchez Palomo and Esperanza Macarena Rodriguez Serrano for IHC and histological assistance, and María González Dionis for in vitro technical assistance. The research was supported by a Rámon y Cajal Merit Award (RYC-2012-12104) from the Ministerio de Economía y Competitividad, Spain (BS, Jr.), a Clinic and Laboratory Integration Program (CLIP) grant from the Cancer Research Institute (CRI), NY (BS, Jr.), a Coordinated grant (GC16173694BARB) from the Fundación Asociación Española Contra el Cáncer (AECC) (AC and BS, Jr.), Fondo de Investigaciones Sanitarias (FIS) grants PI15/01507 (BS, Jr.), PI15/01715 (LGB) and PI15/02101 (AC) (co-financed through Fondo Europeo de Desarrollo Regional (FEDER) “Una manera de hacer Europa”) from the Instituto de Salud Carlos III (ISCIII), Spain, funding from the Biomedical Research Network in Cancer (CIBERONC:CB16/12/00446) for clinical sample and data collection (AC), funding from the Austrian Science Fund (FWF-B27361) and Ingrid Shaker-Nessmann Foundation for Cancer Research (PM), a Max Eder Fellowship of the German Cancer Aid (111746) (PCH), and by the German Research Foundation (DFG, CRC 1279 “Exploiting the human peptidome for Novel Antimicrobial and Anticancer Agents”) (PCH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Sainz Jr..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Errico, G., Alonso-Nocelo, M., Vallespinos, M. et al. Tumor-associated macrophage-secreted 14-3-3ζ signals via AXL to promote pancreatic cancer chemoresistance. Oncogene 38, 5469–5485 (2019). https://doi.org/10.1038/s41388-019-0803-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0803-9

This article is cited by

Search

Quick links