Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain

Abstract

Nanoparticle-mediated drug delivery is especially useful for targets within endosomes because of the endosomal transport mechanisms of many nanomedicines within cells. Here, we report the design of a pH-responsive, soft polymeric nanoparticle for the targeting of acidified endosomes to precisely inhibit endosomal signalling events leading to chronic pain. In chronic pain, the substance P (SP) neurokinin 1 receptor (NK1R) redistributes from the plasma membrane to acidified endosomes, where it signals to maintain pain. Therefore, the NK1R in endosomes provides an important target for pain relief. The pH-responsive nanoparticles enter cells by clathrin- and dynamin-dependent endocytosis and accumulate in NK1R-containing endosomes. Following intrathecal injection into rodents, the nanoparticles, containing the FDA-approved NK1R antagonist aprepitant, inhibit SP-induced activation of spinal neurons and thus prevent pain transmission. Treatment with the nanoparticles leads to complete and persistent relief from nociceptive, inflammatory and neuropathic nociception and offers a much-needed non-opioid treatment option for chronic pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of DIPMA and BMA nanoparticles.
Fig. 2: Uptake and disassembly of DIPMA and BMA nanoparticles in HEK-293 cells.
Fig. 3: Biodistribution and cellular uptake of nanoparticles and aprepitant delivery.
Fig. 4: Effects of nanoparticles on nociceptive, inflammatory and neuropathic nociception.
Fig. 5: Sensitization and activation of nociceptive transmission.
Fig. 6: Antagonism of NK1R signalling in endosomes.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are available in this Article and its Supplementary Information or from the corresponding authors upon request.

References

  1. De Jong, W. H. & Borm, P. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3, 133–149 (2008).

    Google Scholar 

  2. Farokhzad, O. C. & Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20 (2009).

    CAS  Google Scholar 

  3. Uhrich, K. E., Cannizzaro, S. M., Langer, R. S. & Shakesheff, K. M. Polymeric systems for controlled drug release. Chem. Rev. 99, 3181–3198 (1999).

    CAS  Google Scholar 

  4. Maeda, H. et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control Rel. 65, 271–284 (2000).

    CAS  Google Scholar 

  5. Such, G. K., Yan, Y., Johnston, A. P. R., Gunawan, S. T. & Caruso, F. Interfacing materials science and biology for drug carrier design. Adv. Mater. 27, 2278–2297 (2015).

    CAS  Google Scholar 

  6. Chan, J. M., Farokhzad, O. C. & Gao, W. pH-responsive nanoparticles for drug delivery. Mol. Pharm. 7, 1913–1920 (2010).

    Google Scholar 

  7. Lynn, D. M., Amiji, M. M. & Langer, R. pH-responsive polymer microspheres: rapid release of encapsulated material within the range of intracellular pH. Angew. Chem. Int. Ed. 40, 1707–1710 (2001).

    CAS  Google Scholar 

  8. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    CAS  Google Scholar 

  9. Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58, 1655–1670 (2006).

    CAS  Google Scholar 

  10. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    CAS  Google Scholar 

  11. Zhou, K. et al. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem. Int. Ed. 50, 6109–6114 (2011).

    CAS  Google Scholar 

  12. Nelson, C. E. et al. Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time and bioactivity in vivo. ACS Nano 7, 8870–8880 (2013).

    CAS  Google Scholar 

  13. Thomsen, A. R. B., Jensen, D. D., Hicks, G. A. & Bunnett, N. W. Therapeutic targeting of endosomal G protein-coupled receptors. Trends Pharmacol. Sci. 39, 879–891 (2018).

    CAS  Google Scholar 

  14. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    CAS  Google Scholar 

  15. Murphy, J. E., Padilla, B. E., Hasdemir, B., Cottrell, G. S. & Bunnett, N. W. Endosomes: a legitimate platform for the signaling train. Proc. Natl Acad. Sci. USA 106, 17615–17622 (2009).

    CAS  Google Scholar 

  16. Vilardaga, J. P., Jean-Alphonse, F. G. & Gardella, T. J. Endosomal generation of cAMP in GPCR signaling. Nat. Chem. Biol. 10, 700–706 (2014).

    CAS  Google Scholar 

  17. Irannejad, R. et al. Functional selectivity of GPCR-directed drug action through location bias. Nat. Chem. Biol. 13, 799–806 (2017).

    CAS  Google Scholar 

  18. Stoeber, M. et al. A genetically encoded biosensor reveals location bias of opioid drug action. Neuron 98, 963–976 (2018).

    CAS  Google Scholar 

  19. Jensen, D. D. et al. Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief. Sci. Transl. Med. 9, eaal3447 (2017).

    Google Scholar 

  20. Jimenez-Vargas, N. N. et al. Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proc. Natl Acad. Sci. USA 115, E7438–E7447 (2018).

    CAS  Google Scholar 

  21. Yarwood, R. E. et al. Endosomal signaling of the receptor for calcitonin gene-related peptide mediates pain transmission. Proc. Natl Acad. Sci. USA 114, 12309–12314 (2017).

    CAS  Google Scholar 

  22. Kramer, M. S. et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281, 1640–1645 (1998).

    CAS  Google Scholar 

  23. Quartara, L., Altamura, M., Evangelista, S. & Maggi, C. A. Tachykinin receptor antagonists in clinical trials. Expert Opin. Investig. Drugs 18, 1843–1864 (2009).

    CAS  Google Scholar 

  24. Steinhoff, M. S., Von Mentzer, B., Geppetti, P., Pothoulakis, C. & Bunnett, N. W. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol. Rev. 94, 265–301 (2014).

    CAS  Google Scholar 

  25. Manders, E. M. M., Verbeek, F. J. & Aten, J. A. Measurement of co-localization of objects in dual-colour confocal images. J. Microsc. 169, 375–382 (1993).

    Google Scholar 

  26. Robertson, M. J. et al. Synthesis of the PitStop family of clathrin inhibitors. Nat. Protoc. 9, 1592–1606 (2014).

    CAS  Google Scholar 

  27. Robertson, M. J., Deane, F. M., Robinson, P. J. & McCluskey, A. Synthesis of Dynole 34-2, Dynole 2-24 and Dyngo 4a for investigating dynamin GTPase. Nat. Protoc. 9, 851–870 (2014).

    CAS  Google Scholar 

  28. Mantyh, P. W. et al. Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science 268, 1629–1632 (1995).

    CAS  Google Scholar 

  29. Stein, C., Millan, M. J. & Herz, A. Unilateral inflammation of the hindpaw in rats as a model of prolonged noxious stimulation: alterations in behavior and nociceptive thresholds. Pharmacol. Biochem. Behav. 31, 445–451 (1988).

    CAS  Google Scholar 

  30. Decosterd, I. & Woolf, C. J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149–158 (2000).

    CAS  Google Scholar 

  31. Bravo, D. et al. Pannexin 1: a novel participant in neuropathic pain signaling in the rat spinal cord. Pain 155, 2108–2115 (2014).

    CAS  Google Scholar 

  32. Abbadie, C., Brown, J. L., Mantyh, P. W. & Basbaum, A. I. Spinal cord substance P receptor immunoreactivity increases in both inflammatory and nerve injury models of persistent pain. Neuroscience 70, 201–209 (1996).

    CAS  Google Scholar 

  33. Geppetti, P., Veldhuis, N. A., Lieu, T. & Bunnett, N. W. G protein-coupled receptors: dynamic machines for signaling pain and itch. Neuron 88, 635–649 (2015).

    CAS  Google Scholar 

  34. Halls, M. L. & Canals, M. Genetically encoded FRET biosensors to illuminate compartmentalised GPCR signalling. Trends Pharmacol. Sci. 39, 148–157 (2018).

    CAS  Google Scholar 

  35. Irannejad, R. & von Zastrow, M. GPCR signaling along the endocytic pathway. Curr. Opin. Cell Biol. 27, 109–116 (2014).

    CAS  Google Scholar 

  36. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  Google Scholar 

  37. Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16, 109–110 (1983).

    CAS  Google Scholar 

  38. Randall, L. O. & Selitto, J. J. A method for measurement of analgesic activity on inflamed tissue. Arch. Int. Pharmacodyn. Ther. 111, 409–419 (1957).

    CAS  Google Scholar 

  39. Santos-Nogueira, E., Redondo Castro, E., Mancuso, R. & Navarro, X. Randall–Selitto test: a new approach for the detection of neuropathic pain after spinal cord injury. J. Neurotrauma 29, 898–904 (2012).

    Google Scholar 

  40. Retamal, J. et al. Burst-like subcutaneous electrical stimulation induces BDNF-mediated, cyclotraxin B-sensitive central sensitization in rat spinal cord. Front. Pharmacol. 9, 1143 (2018).

    Google Scholar 

  41. Imlach, W. L., Bhola, R. F., May, L. T., Christopoulos, A. & Macdonald, J. C. A positive allosteric modulator of the adenosine α1 receptor selectively inhibits primary afferent synaptic transmission in a neuropathic pain model. Mol. Pharmacol. 88, 460–468 (2015).

    CAS  Google Scholar 

  42. Di Porzio, U., Daguet, M. C., Glowinski, J. & Prochiantz, A. Effect of striatal cells on in vitro maturation of mesencephalic dopaminergic neurones grown in serum-free conditions. Nature 288, 370–373 (1980).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NS102722, DE026806, DK118971), the Department of Defense (PR170507), the National Health and Medical Research Council (63303, 1049682, 1031886; N.W.B.), the Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology (N.W.B. and T.P.D.), the Center for the Development of Nanoscience and Nanotechnology (CEDENNA, Fondecyt no. 1181622, L.C.) and Takeda Pharmaceuticals Inc. (N.W.B., N.A.V and D.P.P.). We thank F. Chiu for mass spectrometry analysis of aprepitant loading and P. Zhao for advice about signalling assays.

Author information

Authors and Affiliations

Authors

Contributions

P.D.R.-G. prepared and characterized nanoparticles, examined nanoparticle uptake and disassembly, studied SP signalling in model cells and wrote the manuscript. J.S.R. studied the biodistribution and anti-nociceptive and in vivo electrophysiological actions of nanoparticles. P.S. studied the biodistribution and anti-nociceptive actions of nanoparticles. W.I. conceived and designed electrophysiological studies on spinal neurons. M.S. studied the excitation of spinal neurons, and N.T. prepared and characterized nanoparticles. L.C. conceived and designed neuropathic nociception and in vivo electrophysiological studies. T.P. conceived and designed neuropathic nociception. C.J.N. provided expertise in the analysis of confocal images and S.Y.K. obtained transmission electron microscopy images. L.M.L. characterized the critical micellar concentration and pH-disassembly of nanoparticles. C.L. studied SP signalling in model cells and D.P.P. studied nanoparticle uptake. T.M.L. studied anti-nociceptive actions of nanoparticles, G.D.S. prepared striatal neurons, and Q.N.M. prepared and characterized nanoparticles. D.D.J. examined NK1R endocytosis, nanoparticle uptake into spinal neurons, and SP signalling in model cells and striatal neurons. R.L. examined NK1R endocytosis and nanoparticle uptake into spinal neurons. N.S.N. studied NK1R endocytosis in rats. B.L.S. designed experiments to examine NK1R endocytosis in rats. J.F.Q. designed nanoparticles and wrote the manuscript. M.R.W. designed nanoparticles. N.A.V. conceived experiments, studied SP signalling in neurons, interpreted the results and wrote the manuscript. T.P.D. conceived the experiments and designed the nanoparticles. N.W.B. conceived and designed the experiments, interpreted the results and wrote the manuscript.

Corresponding authors

Correspondence to Nicholas A. Veldhuis, Thomas P. Davis or Nigel W. Bunnett.

Ethics declarations

Competing interests

Research in N.A.V.'s, D.P.P.’s and N.W.B.’s laboratories is funded, in part, by Takeda Pharmaceuticals. N.W.B. is a founding scientist of Endosome Therapeutics.

Additional information

Peer review information Nature Nanotechnology thanks Jean-Pierre Vilardaga and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Methods, Supplementary Figs. 1–8, Supplementary Video titles and legends 1–7 and Supplementary refs. 1–4.

Reporting Summary

Supplementary Video 1

Localization of DIPMA-Cy5 nanoparticles and Rab5a-GFP in HEK-293 cells.

Supplementary Video 2

Localization of DIPMA-Cy5 nanoparticles and Rab7a-GFP in HEK-293 cells.

Supplementary Video 3

Localization of DIPMA-Cy5 nanoparticles and NK1R-GFP in HEK-293 cells.

Supplementary Video 4

Localization of DIPMA-Cy5 nanoparticles in the mouse dorsal horn.

Supplementary Video 5

Localization of BMA-Cy5 nanoparticles in the mouse dorsal horn.

Supplementary Video 6

Localization of NK1R-IR in the rat dorsal horn after sham surgery.

Supplementary Video 7

Localization of NK1R-IR in the rat dorsal horn after SNS surgery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-García, P.D., Retamal, J.S., Shenoy, P. et al. A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain. Nat. Nanotechnol. 14, 1150–1159 (2019). https://doi.org/10.1038/s41565-019-0568-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0568-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research