Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unmasking senescence: context-dependent effects of SASP in cancer

Abstract

Cellular senescence plays a critical role in tumorigenesis. Once thought of as a tissue culture artefact by some researchers, senescence is now a major field of study. Although there are common molecular mechanisms that enforce the growth arrest that characterizes the phenotype, the impact of senescence is varied and can, in some instances, have opposite effects on tumorigenesis. It has become clearer that the cell of origin and the tissue in question dictate the impact of senescence on tumorigenesis. In this Review, we unravel this complexity by focusing on how senescence impacts tumorigenesis when it arises within incipient tumour cells versus stromal cells, and how these roles can change in different stages of disease progression. In addition, we highlight the diversity of the senescent phenotype and its functional output beyond growth arrest: the senescence-associated secretory phenotype (SASP). Fortunately, a number of new genetic and pharmacologic tools have been developed that are now allowing the senescence phenotype to be parsed further.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Signalling pathways control senescence-associated secretory phenotype (SASP) expression.
Fig. 2: Senescence-associated secretory phenotype (SASP) factors can support or suppress anti-tumour immune responses.
Fig. 3: Function of senescence-associated secretory phenotype (SASP) factors during tumour initiation and progression.

Similar content being viewed by others

References

  1. Jacobs, J. J. et al. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat. Genet. 26, 291–299 (2000).

    CAS  PubMed  Google Scholar 

  2. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000).

    CAS  PubMed  Google Scholar 

  3. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    CAS  PubMed  Google Scholar 

  4. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001). This is the first study to have shown that senescence can be pro-tumorigenic.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jain, A. K. & Barton, M. C. p53: emerging roles in stem cells, development and beyond. Development 145, dev158360 (2018).

    PubMed  Google Scholar 

  6. Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    CAS  PubMed  Google Scholar 

  7. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    CAS  PubMed  Google Scholar 

  8. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Munoz-Espin, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

    CAS  PubMed  Google Scholar 

  10. Lee, S. & Schmitt, C. A. The dynamic nature of senescence in cancer. Nat. Cell Biol. 21, 94–101 (2019).

    CAS  PubMed  Google Scholar 

  11. Sieben, C. J., Sturmlechner, I., van de Sluis, B. & van Deursen, J. M. Two-step senescence-focused cancer therapies. Trends Cell Biol. 28, 723–737 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rao, S. G. & Jackson, J. G. SASP: tumor suppressor or promoter? Yes! Trends Cancer 2, 676–687 (2016).

    PubMed  Google Scholar 

  13. Sun, Y., Coppe, J. P. & Lam, E. W. F. Cellular senescence: the sought or the unwanted? Trends Mol. Med. 24, 871–885 (2018).

    CAS  PubMed  Google Scholar 

  14. te Poele, R. H., Okorokov, A. L., Jardine, L., Cummings, J. & Joel, S. P. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62, 1876–1883 (2002).

    Google Scholar 

  15. Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA 89, 10114–10118 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schworer, S. et al. Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals. Nature 540, 428–432 (2016).

    PubMed  Google Scholar 

  17. Chen, Q. M. et al. Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem. J. 332, 43–50 (1998).

    CAS  PubMed Central  Google Scholar 

  18. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    CAS  PubMed  Google Scholar 

  19. Wang, E. & Gundersen, D. Increased organization of cytoskeleton accompanying the aging of human fibroblasts in vitro. Exp. Cell Res. 154, 191–202 (1984).

    CAS  PubMed  Google Scholar 

  20. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    CAS  PubMed  Google Scholar 

  21. Freund, A., Laberge, R. M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bavik, C. et al. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res. 66, 794–802 (2006).

    CAS  PubMed  Google Scholar 

  23. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, A. S., Ong, P. F., Chojnowski, A., Clavel, C. & Dreesen, O. Loss of lamin B1 is a biomarker to quantify cellular senescence in photoaged skin. Sci. Rep. 7, 15678 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Dreesen, O. et al. Lamin B1 fluctuations have differential effects on cellular proliferation and senescence. J. Cell Biol. 200, 605–617 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sharpless, N. E. & Sherr, C. J. Forging a signature of in vivo senescence. Nat. Rev. Cancer 15, 397–408 (2015).

    CAS  PubMed  Google Scholar 

  27. Milanovic, M. et al. Senescence-associated reprogramming promotes cancer stemness. Nature 553, 96–100 (2018).

    CAS  PubMed  Google Scholar 

  28. Hara, E., Tsurui, H., Shinozaki, A., Nakada, S. & Oda, K. Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts. TIG-1. Biochem. Biophys. Res. Commun. 179, 528–534 (1991).

    CAS  PubMed  Google Scholar 

  29. Beausejour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Freund, A., Patil, C. K. & Campisi, J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 30, 1536–1548 (2011). This reference highlights the important role of p38MAPK in SASP regulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Alspach, E. et al. p38MAPK plays a crucial role in stromal-mediated tumorigenesis. Cancer Discov. 4, 716–729 (2014). This reference highlights the important role of p38MAPK in the post-transcriptional regulation of SASP.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Orjalo, A. V., Bhaumik, D., Gengler, B. K., Scott, G. K. & Campisi, J. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc. Natl Acad. Sci. USA 106, 17031–17036 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013). This study demonstrates that SASP can act in a paracrine fashion to spread senescence.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008). This study shows that senescent cells activate a self-amplifying secretory network reinforcing growth arrest.

    CAS  PubMed  Google Scholar 

  35. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

    CAS  PubMed  Google Scholar 

  36. Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

    CAS  PubMed  Google Scholar 

  37. Ruhland, M. K. et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat. Commun. 7, 11762 (2016). This study shows that senescent stromal cells recruit myeloid-derived suppressor cells, which creates an immunosuppressive microenvironment in which cancer cells thrive.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007). This study demonstrates that the induction of senescence in tumour cells can trigger immune-mediated clearance.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Peng, Q. et al. Biological characteristics and genetic heterogeneity between carcinoma-associated fibroblasts and their paired normal fibroblasts in human breast cancer. PLOS ONE 8, e60321 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang, C. et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLOS Biol. 6, 2853–2868 (2008).

    CAS  PubMed  Google Scholar 

  43. Chien, Y. et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev. 25, 2125–2136 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Coppe, J. P. et al. Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J. Biol. Chem. 286, 36396–36403 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nilsson, M. B., Langley, R. R. & Fidler, I. J. Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res. 65, 10794–10800 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tanaka, T., Narazaki, M. & Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 6, a016295 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Herranz, N. et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 17, 1205–1217 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Laberge, R. M. et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17, 1049–1061 (2015). References 47 and 48 demonstrate that the mTOR–MK2 pathway plays an important role in SASP regulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wiley, C. D. et al. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell 16, 1043–1050 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hernandez-Segura, A. et al. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652–2660 (2017). This study summarizes several SASP expression datasets and demonstrates that SASP expression can be quite unique in different scenarios.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wiley, C. D. et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 23, 303–314 (2016).

    CAS  PubMed  Google Scholar 

  52. Ozcan, S. et al. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany NY) 8, 1316–1329 (2016).

    Google Scholar 

  53. Flanagan, K. C. et al. c-Myb and C/EBPbeta regulate OPN and other senescence-associated secretory phenotype factors. Oncotarget 9, 21–36 (2018).

    PubMed  Google Scholar 

  54. Hoare, M. et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat. Cell Biol. 18, 979–992 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Toso, A. et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 9, 75–89 (2014).

    CAS  PubMed  Google Scholar 

  56. Gluck, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017). References 56 and 57 reveal that the cGAS–STING pathway promotes SASP secretion.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang, H., Wang, H., Ren, J., Chen, Q. & Chen, Z. J. cGAS is essential for cellular senescence. Proc. Natl Acad. Sci. USA 114, E4612–E4620 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Takahashi, A. et al. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat. Commun. 9, 1249 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. Wall, M. et al. The mTORC1 inhibitor everolimus prevents and treats Emu–Myc lymphoma by restoring oncogene-induced senescence. Cancer Discov. 3, 82–95 (2013).

    CAS  PubMed  Google Scholar 

  62. Chen, H. et al. MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated secretory phenotype. Mol. Cell 59, 719–731 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Contrepois, K. et al. Histone variant H2A. J accumulates in senescent cells and promotes inflammatory gene expression. Nat. Commun. 8, 14995 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Pazolli, E. et al. Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Res. 72, 2251–2261 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hayakawa, T. et al. SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation. PLOS ONE 10, e0116480 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Ito, T., Teo, Y. V., Evans, S. A., Neretti, N. & Sedivy, J. M. Regulation of cellular senescence by polycomb chromatin modifiers through distinct DNA damage- and histone methylation-dependent pathways. Cell Rep. 22, 3480–3492 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Capell, B. C. et al. MLL1 is essential for the senescence-associated secretory phenotype. Genes Dev. 30, 321–336 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Davalos, A. R. et al. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J. Cell Biol. 201, 613–629 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Aird, K. M. et al. HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. J. Cell Biol. 215, 325–334 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tasdemir, N. et al. BRD4 connects enhancer remodeling to senescence immune surveillance. Cancer Discov. 6, 612–629 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

    CAS  PubMed  Google Scholar 

  72. Sen, P., Shah, P. P., Nativio, R. & Berger, S. L. Epigenetic mechanisms of longevity and aging. Cell 166, 822–839 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nacarelli, T., Liu, P. & Zhang, R. Epigenetic basis of cellular senescence and its implications in aging. Genes 8, E343 (2017).

    PubMed  Google Scholar 

  74. Gardner, S. E., Humphry, M., Bennett, M. R. & Clarke, M. C. Senescent vascular smooth muscle cells drive inflammation through an interleukin-1alpha-dependent senescence-associated secretory phenotype. Arterioscler. Thromb. Vasc. Biol. 35, 1963–1974 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nelson, G. et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11, 345–349 (2012).

    CAS  PubMed  Google Scholar 

  76. Nelson, G., Kucheryavenko, O., Wordsworth, J. & von Zglinicki, T. The senescent bystander effect is caused by ROS-activated NF-κB signalling. Mech. Ageing Dev. 170, 30–36 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rakhra, K. et al. CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18, 485–498 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Braumuller, H. et al. T-Helper-1-cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013).

    PubMed  Google Scholar 

  79. Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69 (Suppl. 1), S4–S9 (2014).

    PubMed  Google Scholar 

  80. Vizioli, M. G. et al. Oncogenic RAS-induced senescence in human primary thyrocytes: molecular effectors and inflammatory secretome involved. Oncotarget 5, 8270–8283 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017). This study shows that therapy-induced senescence increases metastasis and relapse.

    CAS  PubMed  Google Scholar 

  82. Sakurai, T. & Kudo, M. Molecular link between liver fibrosis and hepatocellular carcinoma. Liver Cancer 2, 365–366 (2013).

    PubMed  PubMed Central  Google Scholar 

  83. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sagiv, A. et al. NKG2D ligands mediate immunosurveillance of senescent cells. Aging (Albany NY) 8, 328–344 (2016).

    CAS  Google Scholar 

  85. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Iannello, A., Thompson, T. W., Ardolino, M., Lowe, S. W. & Raulet, D. H. p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J. Exp. Med. 210, 2057–2069 (2013).

    CAS  PubMed  Google Scholar 

  87. Soriani, A. et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113, 3503–3511 (2009).

    CAS  PubMed  Google Scholar 

  88. Ruscetti, M. et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 362, 1416–1422 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kansara, M. et al. Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation. J. Clin. Invest. 123, 5351–5360 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    CAS  PubMed  Google Scholar 

  91. Eggert, T. et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 30, 533–547 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. De Pergola, G. & Silvestris, F. Obesity as a major risk factor for cancer. J. Obes. 2013, 291546 (2013).

    PubMed  PubMed Central  Google Scholar 

  93. Loo, T. M. et al. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov. 7, 522–538 (2017).

    CAS  PubMed  Google Scholar 

  94. Risques, R. A. & Kennedy, S. R. Aging and the rise of somatic cancer-associated mutations in normal tissues. PLOS Genet. 14, e1007108 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. Di Mitri, D. et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature 515, 134–137 (2014).

    PubMed  Google Scholar 

  96. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

    CAS  PubMed  Google Scholar 

  97. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    CAS  PubMed  Google Scholar 

  98. Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    CAS  PubMed  Google Scholar 

  99. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Baker, D. J. et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016). This study demonstrates that the systemic deletion of senescent cells results in reduced spontaneous tumour formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lawrenson, K. et al. Senescent fibroblasts promote neoplastic transformation of partially transformed ovarian epithelial cells in a three-dimensional model of early stage ovarian cancer. Neoplasia 12, 317–325 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Coppe, J. P. et al. A role for fibroblasts in mediating the effects of tobacco-induced epithelial cell growth and invasion. Mol. Cancer Res. 6, 1085–1098 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lederle, W. et al. IL-6 promotes malignant growth of skin SCCs by regulating a network of autocrine and paracrine cytokines. Int. J. Cancer 128, 2803–2814 (2011).

    CAS  PubMed  Google Scholar 

  105. Hartman, Z. C. et al. Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res. 73, 3470–3480 (2013).

    CAS  PubMed  Google Scholar 

  106. Di, G. H. et al. IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells. PLOS ONE 9, e113572 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Rojas, A. et al. IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. Oncogene 30, 2345–2355 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Song, L., Rawal, B., Nemeth, J. A. & Haura, E. B. JAK1 activates STAT3 activity in non-small-cell lung cancer cells and IL-6 neutralizing antibodies can suppress JAK1-STAT3 signaling. Mol. Cancer Ther. 10, 481–494 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, B., Hendricks, D. T., Wamunyokoli, F. & Parker, M. I. A growth-related oncogene/CXC chemokine receptor 2 autocrine loop contributes to cellular proliferation in esophageal cancer. Cancer Res. 66, 3071–3077 (2006).

    CAS  PubMed  Google Scholar 

  110. Pazolli, E. et al. Senescent stromal-derived osteopontin promotes preneoplastic cell growth. Cancer Res. 69, 1230–1239 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Luo, X., Ruhland, M. K., Pazolli, E., Lind, A. C. & Stewart, S. A. Osteopontin stimulates preneoplastic cellular proliferation through activation of the MAPK pathway. Mol. Cancer Res. 9, 1018–1029 (2011).

    CAS  PubMed  Google Scholar 

  112. Guan, X. et al. Stromal senescence by prolonged CDK4/6 inhibition potentiates tumor growth. Mol. Cancer Res. 15, 237–249 (2017).

    CAS  PubMed  Google Scholar 

  113. Liu, D. & Hornsby, P. J. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 67, 3117–3126 (2007).

    CAS  PubMed  Google Scholar 

  114. Oubaha, M. et al. Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Sci. Transl Med. 8, 362ra144 (2016).

    PubMed  Google Scholar 

  115. Coppe, J. P., Kauser, K., Campisi, J. & Beausejour, C. M. Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J. Biol. Chem. 281, 29568–29574 (2006).

    CAS  PubMed  Google Scholar 

  116. Yang, F. et al. Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res. 65, 8887–8895 (2005).

    CAS  PubMed  Google Scholar 

  117. Ortiz-Montero, P., Londono-Vallejo, A. & Vernot, J. P. Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun. Signal. 15, 17 (2017).

    PubMed  PubMed Central  Google Scholar 

  118. Tato-Costa, J. et al. Therapy-induced cellular senescence induces epithelial-to-mesenchymal transition and increases invasiveness in rectal cancer. Clin. Colorectal Cancer 15, 170–178 (2016).

    PubMed  Google Scholar 

  119. Canino, C. et al. SASP mediates chemoresistance and tumor-initiating-activity of mesothelioma cells. Oncogene 31, 3148–3163 (2012).

    CAS  PubMed  Google Scholar 

  120. Aifuwa, I. et al. Senescent stromal cells induce cancer cell migration via inhibition of RhoA/ROCK/myosin-based cell contractility. Oncotarget 6, 30516–30531 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. Farsam, V. et al. Senescent fibroblast-derived Chemerin promotes squamous cell carcinoma migration. Oncotarget 7, 83554–83569 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174 (2002).

    CAS  PubMed  Google Scholar 

  123. Tsai, K. K., Chuang, E. Y., Little, J. B. & Yuan, Z. M. Cellular mechanisms for low-dose ionizing radiation-induced perturbation of the breast tissue microenvironment. Cancer Res. 65, 6734–6744 (2005).

    CAS  PubMed  Google Scholar 

  124. Qian, L. W. et al. Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin. Cancer Res. 8, 1223–1227 (2002).

    CAS  PubMed  Google Scholar 

  125. Malaquin, N. et al. Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis. PLOS ONE 8, e63607 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. Angelini, P. D. et al. Constitutive HER2 signaling promotes breast cancer metastasis through cellular senescence. Cancer Res. 73, 450–458 (2013).

    CAS  PubMed  Google Scholar 

  128. Kim, Y. H. et al. Senescent tumor cells lead the collective invasion in thyroid cancer. Nat. Commun. 8, 15208 (2017).

    PubMed  PubMed Central  Google Scholar 

  129. Luo, X. et al. Stromal-initiated changes in the bone promote metastatic niche development. Cell Rep. 14, 82–92 (2016). This study demonstrates that senescent cells are sufficient to create a pre-metastatic niche in the bone, increasing breast cancer metastasis in the bone.

    CAS  PubMed  Google Scholar 

  130. Wieland, E. et al. Endothelial Notch1 activity facilitates metastasis. Cancer Cell 31, 355–367 (2017).

    CAS  PubMed  Google Scholar 

  131. Liu, Y. & Cao, X. Characteristics and significance of the pre-metastatic niche. Cancer Cell 30, 668–681 (2016).

    CAS  PubMed  Google Scholar 

  132. Kaur, A. et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532, 250–254 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sun, Y. et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat. Med. 18, 1359–1368 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Sun, Y. et al. SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. Oncogene 35, 4321–4334 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Gilbert, L. A. & Hemann, M. T. DNA damage-mediated induction of a chemoresistant niche. Cell 143, 355–366 (2010). This study demonstrates that senescent endothelial cells create a chemoprotective niche by secreting IL-6.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Bent, E. H., Gilbert, L. A. & Hemann, M. T. A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses. Genes Dev. 30, 1811–1821 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Nunes, T. et al. Targeting cancer stem cells to overcome chemoresistance. Int. J. Mol. Sci. 19, 4036 (2018).

    PubMed Central  Google Scholar 

  138. Mosteiro, L. et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, aaf4445 (2016).

    PubMed  Google Scholar 

  139. Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. Cahu, J., Bustany, S. & Sola, B. Senescence-associated secretory phenotype favors the emergence of cancer stem-like cells. Cell Death Dis. 3, e446 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Rader, J. et al. Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin. Cancer Res. 19, 6173–6182 (2013).

    CAS  PubMed  Google Scholar 

  142. Yoshida, A., Lee, E. K. & Diehl, J. A. Induction of therapeutic senescence in vemurafenib-resistant melanoma by extended inhibition of CDK4/6. Cancer Res. 76, 2990–3002 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kastan, M. B. Wild-type p53: tumors can’t stand it. Cell 128, 837–840 (2007).

    CAS  PubMed  Google Scholar 

  145. Jackson, J. G. et al. p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell 21, 793–806 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu, Y. et al. Targeting aurora kinases limits tumour growth through DNA damage-mediated senescence and blockade of NF-κB impairs this drug-induced senescence. EMBO Mol. Med. 5, 149–166 (2013).

    CAS  PubMed  Google Scholar 

  147. Vilgelm, A. E. et al. Connecting the dots: therapy-induced senescence and a tumor-suppressive immune microenvironment. J. Natl Cancer Inst. 108, djv406 (2016).

    PubMed  Google Scholar 

  148. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147 (2017). This study demonstrates that the elimination of senescent cells with a peptide that disrupts p53–FOXO4 interactions can reduce the negative morbidities associated with chemotherapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    CAS  PubMed  Google Scholar 

  151. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Pernicova, I. & Korbonits, M. Metformin — mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143–156 (2014).

    CAS  PubMed  Google Scholar 

  153. Moiseeva, O. et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 12, 489–498 (2013).

    CAS  PubMed  Google Scholar 

  154. Murali, B. et al. Inhibition of the stromal p38MAPK/MK2 pathway limits breast cancer metastases and chemotherapy-induced bone loss. Cancer Res. 78, 5618–5630 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang, R. et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell 16, 564–574 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Watanabe, S., Kawamoto, S., Ohtani, N. & Hara, E. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci. 108, 563–569 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Bodai, B. I. & Tuso, P. Breast cancer survivorship: a comprehensive review of long-term medical issues and lifestyle recommendations. Perm. J. 19, 48–79 (2015).

    PubMed  PubMed Central  Google Scholar 

  158. Dorshkind, K., Montecino-Rodriguez, E. & Signer, R. A. The ageing immune system: is it ever too old to become young again? Nat. Rev. Immunol. 9, 57–62 (2009).

    CAS  PubMed  Google Scholar 

  159. Dorshkind, K., Swain, S. Age-associated declines in immune system development and function: causes, consequences, and reversal. Curr. Opin. Immunol. 21, 404–407 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Montecino-Rodriguez, E., Berent-Maoz, B. & Dorshkind, K. Causes, consequences, and reversal of immune system aging. J. Clin. Invest. 123, 958–965 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Shaw, A. C., Goldstein, D. R. & Montgomery, R. R. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 13, 875–887 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Simell, B. et al. Aging reduces the functionality of anti-pneumococcal antibodies and the killing of Streptococcus pneumoniae by neutrophil phagocytosis. Vaccine 29, 1929–1934 (2011).

    CAS  PubMed  Google Scholar 

  163. Beli, E. et al. Natural killer cell function is altered during the primary response of aged mice to influenza infection. Mech. Ageing Dev. 132, 503–510 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Nogusa, S., Ritz, B. W., Kassim, S. H., Jennings, S. R. & Gardner, E. M. Characterization of age-related changes in natural killer cells during primary influenza infection in mice. Mech. Ageing Dev. 129, 223–230 (2008).

    CAS  PubMed  Google Scholar 

  165. Aras, S. & Zaidi, M. R. TAMeless traitors: macrophages in cancer progression and metastasis. Br. J. Cancer 117, 1583–1591 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the US Army Medical Research Acquisition Activity, from the awarding and administrating acquisition office at 820 Chandler Street, Fort Detrick MD 21702-5014; by the Office of the Assistant Secretary of Defense for Health Affairs, through the Breast Cancer Research Program, under Award W81XWH-16-1-0728; and by the US National Institutes of Health, Grant R01 AG059244 01A1. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussing the content of the manuscript, writing the manuscript and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Sheila A. Stewart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

SEER database: https://seer.cancer.gov/explorer/application.php?site=1&data_type=1&graph_type=3&compareBy=sex&chk_sex_1=1&chk_race_1=1&chk_data_type_1=1&advopt_precision=1&showDataFor=race_1_and_data_type_1

Glossary

Incipient tumour cells

Tumour cells at an initial malignant stage.

Senescence-associated secretory phenotype

(SASP). Proteins secreted by senescent cells that act in a paracrine fashion.

Senolytics

Drugs that specifically target and induce death in senescent cells.

Oncogene-induced senescence

(OIS). Senescence induced following overexpression of oncogenes.

Senescence-associated β-galactosidase

(SA-ßGal). Acidic ßGal activity found in senescent cells.

Therapy-induced senescence

(TIS). Senescence induced by anticancer therapeutics.

Replicative senescence

Senescence induced following sequential rounds of cellular division.

Myeloid-derived suppressor cells

Immature myeloid cells that specifically inhibit natural killer and CD8+ T cell killing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faget, D.V., Ren, Q. & Stewart, S.A. Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer 19, 439–453 (2019). https://doi.org/10.1038/s41568-019-0156-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-019-0156-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer